
CS148/ES278 HO #5
Spring 2004 Verilog

Verilog According to Tom 1

Verilog According to Tom

1.0 What’s Ver ilog?

The name Verilog refers to both a language and a simulator which are used to functionally
specify and model digital systems. This document describes Verilog in the context of pro-
ducing RTL models of hardware, especially hardware which will subsequently be imple-
mented.

Hopefully this document along with some example Verilog code provide what most stu-
dents need to master Verilog syntax, semantics, and good coding practice, leaving the
Verilog reference manuals to be reference manuals.

1.1 The Ver ilog Language

Verilog HDL (Hardware Description Language) was concocted by Gateway Design Auto-
mation and later put in the public domain by Cadence Design Systems in order to promote
the language as a standard.

Verilog models look like programs. Descriptions are partitioned into Verilog modules.
Modules resemble subroutines in that you can write one description and use (instantiate) it
in multiple places.

You can assemble modules hierarchically. Lower-level modules will have inputs and out-
puts which syntactically look like procedure parameters. The higher-level module instanti-
ates them and connects their input and output ports with Verilog “wires” in a syntax that
looks like a procedure call.

The lowest modules in the hierarchy, and possibly others, will have descriptions of func-
tionality. Both declarative and procedural descriptions look like C-language statements
with C-like expression operators, but with different meaning for the “variables” .

/ / Ver i l og Exampl e, an SR- l at ch made f r om t wo nand gat es
/ / Thi s descr i pt i on has no del ays, so i t won’ t act ual l y wor k,
/ / but i t shows how modul es ar e put t oget her .

modul e nand(i n1, i n2, out) ;
i nput i n1, i n2;
out put out ;

assi gn out = ~(i n1 & i n2) ;

endmodul e

HO #7 Wei
CS 148 Spring 2002

2 Verilog According to Tom

/ / Thi s modul e i nst ant i at es and “ hooks up” t wo “ nand” modul es

modul e sr l at ch(s, r , q, q_b) ;
i nput s, r ;
out put q, q_b;

nand nand1(s, q_b, q) ;
nand nand2(r , q, q_b) ;

endmodul e

1.2 The Ver ilog Simulator

Cadence Design Systems sells Verilog-XL, a simulator for the Verilog HDL language.
Verilog-XL compiles and runs a system’s modules either interactively or in batch mode.
Special waveform and state displays are available. Section 5.0 contains details and hints
for running Verilog-XL.

If the simulated system spans several files, Verilog-XL can assemble it regardless of the
order the files are specified in. Verilog-XL compiles the entire system on each invocation,
so there are no intermediate “object” files nor is there an explicit link phase. The compila-
tion step is quite fast, not at all in the way of getting things done.

Cadence restricts our use of Verilog-XL, so it will only run on particular machines by the
grace of various key files. Contact the authorities for details.

1.3 Of What Use is Ver ilog?

This document considers Verilog a hardware modeling tool. Producing a Verilog model
should be one part of your design process. If your code is an end in itself, you’ re reading
the wrong thing, and somebody else will have to tell you what Verilog is worth!

1.3.1 Explor ing Options

At best, your Verilog model will be your design’s most easily manipulated abstraction
among those that both correspond to hardware and are executable. It makes sense to use
Verilog to explore design options at a high level while keeping in sight the approximate
hardware implications of your choices. Synthesis tools can vastly improve the quality of
these approximations.

1.3.2 Simulating and Ver ifying Functionality

You can execute your Verilog model, so you can gain confidence that your system’s
design is functionally correct. Functional simulation ferrets out many errors in complex
systems.

CS148/ES278 HO #5
Spring 2004 Verilog

Verilog According to Tom 3

1.3.3 Generating Functional Test Vectors

The Verilog system should be the earliest executable model of your design, so it can save
tedious work by automatically producing functional test vectors for subsequent simula-
tions at lower abstractions or even the completed hardware.

1.3.4 Input for Downstream Tools

By “working” , the Verilog model becomes a good specification. Verilog models can spec-
ify functionality to synthesis tools like Synopsys, connectivity to routers, and so on.

2.0 An RTL HW-Modeling Ver ilog Subset

The Verilog language and simulator have a lot of features, but a small number of con-
structs are sufficient for RTL hardware modeling. Many exotic Verilog features like tasks,
functions, and named blocks obscure the connection between the functional model and its
implementation in hardware. Others, like primitive gates and support for a complete MOS
switch-level system are too low-level to manipulate easily.

2.1 Values

Disregarding the signal-strength system that supports switch-level MOS, all nodes in a
Verilog model will have one of four values: 1, 0, X (undefined/error), or Z (high imped-
ance). If the node has multiple drivers, they combine as in Figure 1..

Verilog defaults to decimal constants. Binary, octal, decimal, and hexadecimal constants
can be expressed, but only binary constants may contain X or Z. The most general con-
stant syntax is a string with a size in bits, an apostrophe, a radix (b, o, d, or h), and the con-
stant. Examples:

100 / / Deci mal 100, 32 bi t s by def aul t
6’ h3a / / Bi nar y 111010
1’ bx / / One- bi t X
32’ bz / / 32 bi t s of Hi gh- Z

0

1 X Z0

1

X

Z

0 X

X 1

X

X

X X X

Z

1

0

1 X0

X

Figure 1. Value Combinations

HO #7 Wei
CS 148 Spring 2002

4 Verilog According to Tom

Code targeted for synthesis by Synopsys should have sizes on all constants. The sizes will
prevent Synopsys from generating lots of warnings and from synthesizing unnecessary
hardware by assuming constants are 32 bits.

2.2 Objects

2.2.1 Nodes

The verilog wire data type corresponds to a circuit node. The wire keyword itself appears
in declarations. Verilog assumes that undeclared identifiers are names for one-bit wires.

Verilog has other data types similar to wire which indicate wired logic. They’ re declared
wand, wor and tri, you shouldn’ t need them. Synopsys will occasionally output tri, but it’s
a synonym for wire.

2.2.2 Por ts

The inputs, outputs, and bidirectional ports of modules are either wire or reg objects. They
can be vectors, and are declared with the input, output, and inout keywords.

2.2.3 Reg

Reg data types are referenced like wires, but a reg’s value is whatever was most recently
procedurally assigned to it. You create state in Verilog modules by selectively assigning to
reg objects.

A Reg can be a vector, and can also have an integer subscript.

2.3 Hierarchy (Modules)

Modules are the basic units in Verilog models. They contain functional descriptions and
have input, output, and bidirectional ports for interfaces. A module can contain instantia-
tions of other modules. The instantiation syntax looks like a procedure call, complete with
parameter renaming for port connections.

The following are true of module interfaces:

• An input or inout port is a wire within its module.

• An output port must be a wire if it is generated by a submodule.

• An output port must be a wire if it is generated declaratively.

• An output port must be a reg if it is assigned to procedurally.

Bidirectional ports cannot be assigned to procedurally. A method for working around this
limitation is described in section 3.2.3.

CS148/ES278 HO #5
Spring 2004 Verilog

Verilog According to Tom 5

Modules tend to partition into leaf modules and connection modules, where leaf modules
contain procedural (always) and declarative (assign) functionality, and higher modules
connect them together by instantiating them and connecting their ports with wires.

2.4 Expressions

Expressions in a C-like syntax do the combinational logic in Verilog. The operators are C-
like logical and arithmetic operators, and the operands are wires, regs, or constants.

2.4.1 Logic

Bitwise and logical operators look like their C counterparts. There are also logical reduc-
tion operators.

Comparisons can have two different semantics in the presence of X values. The == and !=
operators return X if either argument is X, while the === and !== operators can compare
to the value X itself.

Verilog includes the C conditional expression (question mark - colon) construct.

2.4.2 Ar ithmetic

All arithmetic is signed. The carry can be recovered if the result is one bit larger than the
largest operand, see the example in section 2.4.3.

Keep in mind that arithmetic can be expensive! Grouping of terms in expressions can
affect how well synthesis tools can share resources. Synopsys will not even synthesize
divide or modulus operations.

2.4.3 Concatenation

Verilog has a unique syntax for vector concatenation. The fields are comma-separated
between braces. An integer preceding the brace repeats the result. Examples:

wor d[31: 0] = { shor t 1[15: 0] , shor t 2[15: 0] } ;
{ cout , r esul t [7: 0] } = byt e1[7: 0] + byt e2[7: 0] + c i n;

/ / OK, OK, i t ’ s not r eal l y an expr essi on . . .
wor d[31: 0] = { 24{ byt e[7] } , byt e[7: 0] } ;

/ / s i gn- ext end “ byt e”

2.5 Declarative Descr iptions (assign)

The assign construct expresses functionality declaratively. Syntactically, the keyword
assign precedes one or more assignments. The left side of each is a wire, and the right
hand of each is an expression.

HO #7 Wei
CS 148 Spring 2002

6 Verilog According to Tom

In Verilog nomenclature, the result is a continuous assignment. The assign asserts that the
assigned-to wire is driven with the value of the right-hand expression at all times, with a
delay if any is specified.

Assign constructs always express combinational logic. Examples:

assi gn sum[4: 0] = a[3: 0] + b[3: 0] ;
assi gn a = x & y, o = x | y ;

2.6 Procedural Descr iptions (always)

The initial and always constructs express functionality procedurally. Both cause the exe-
cution of a Verilog statement, but initial executes the statement only once while always
executes the statement repeatedly.

A Verilog statement can be compound, with multiple statements in a begin-end block.
Simple statements are assignments to reg variables, flow control, (if, case), or system
tasks. You won’ t have many system tasks in your code unless you’ re debugging.

2.6.1 Timing Control

All of the always blocks in a system can be thought of as separate, concurrent processes.
Each has a “program counter” which starts at the beginning of the block, advances to the
end, and restarts at the beginning. Multiple statements in a block are executed one at a
time, so that the side-effects of statements are available to subsequent ones, but simulated
time advances only at timing-control points.

Any statement can be proceeded by a timing-control construct. When Verilog encounters
one, execution of statements in that always block is suspended until the event control is
satisfied. Simulated time will only advance when event control is blocking execution of
the always. This example has no event control at all, which causes the simulator to hang:

al ways
begi n

sum = a + b;
di f f = a - b;

end

There are two common types of timing control, delay controls and event controls. Delay
controls suspend execution in their always blocks for the specified number of time units.
Event controls suspend execution until one of the listed signals changes. Most of your
always blocks will have single, initial event control lists as their only timing control.

CS148/ES278 HO #5
Spring 2004 Verilog

Verilog According to Tom 7

/ / 50% dut y cycl e c l ock, 20 t i me uni t per i od
al ways

begi n
cl ock = 0;
#10 / / Del ay cont r ol - 10 uni t s
c l ock = 1;
#10
cl ock = 0;

end

/ / set x t o be a xor b; combi nat i onal l ogi c
al ways @(a or b) / / Event cont r ol - onl y cont i nue

/ / when a changes or b changes
begi n

x = a | b;
i f (a & b)

x = 0;
end

2.6.2 Flow Control

Verilog provides if-else and case for flow control. The case statement also comes in vari-
ants casex and casez, which treat X and Z specially.

The if condition can be a single-bit reg or wire, or an expression. X or Z will cause the else
arm of the if to execute.

Example?

2.6.3 State

Assignments in always blocks are made to reg variables. The reg retains the last value it
was last assigned, so if an always block conditionally assigns to a reg between timing con-
trols, state is implied. Section 3.2.1, for example, shows how to build latches and flip-
flops with this mechanism.

The interaction of timing control and flow control indirectly implies state, so the most
general use of timing control can hopelessly obfuscate the functionality of your model.
The coding guidelines of section 4.5 are highly recommended in order to avoid deadly,
subtle errors.

HO #7 Wei
CS 148 Spring 2002

8 Verilog According to Tom

3.0 How to Model Stuff

3.1 Assign vs. Always

A functional object that needs state requires specification via always, and driving an inout
port requires an assign, but a lot of combinational logic could be specified with either
mechanism. Often the choice is a matter of taste, but each method does have advantages.

Assign is less error prone. Section 4.5 explains in detail how innocent-looking always
blocks can have unintended meaning.

Always is often less tedious to work with. Logic can be embedded in code that already
must exist to create latches and flops. Sequential assignments and/or case statements
express some logic more cleanly than conditional expressions can.

wi r e d;
r eg p;
/ / The f ol l owi ng t wo l i nes each accompl i sh t he
/ / same t hi ng
assi gn d = a & b;
al ways @(a or b) p = a & b;

3.2 Common Pr imitive Objects

3.2.1 Flops and Latches

Model your flip-flops and flow latches with always blocks. A reg variable holds the state,
and flow and timing controls regulate updates.

For flow latches, be sure to model transparency. The latch inputs should appear on the
event control list.

You can combine several latches or flops in the same always block, but flops must all have
the same clock.

CS148/ES278 HO #5
Spring 2004 Verilog

Verilog According to Tom 9

r eg Qf f , Ql ;
r eg [31: 0] a, b;

/ / Posi t i ve edge- t r i gger ed D f l i p f l op
al ways @(posedge c l k)

Qf f = D;

/ / D f l ow l at ch
al ways @(cl k or D)

i f (c l k) Ql = D;

/ / Two 32- bi t l at ches
al ways @(phi 1 or x or y)

i f (phi 1)
begi n

a = x;
b = y;

end

3.2.2 Muxes

Conditional expressions naturally form 2-input muxes. For a higher number of inputs,
muxes will be easier to express procedurally. If the selects aren’ t fully decoded and you
intend to synthesize, be careful of implied priority as described in section 4.5.

assi gn muxout = sel ect ? i nput 1 : i nput 2;

3.2.3 Buses

Any Verilog wire can have multiple drivers. You can specify a “high-impedance” output
for an object driving a bus by driving the Verilog value Z. Expressions in both continuous
assignments and always blocks can generate the value Z, but remember that module inout
port wires must be driven by a continuous assignment. If it’s easier to compute the value
you want to drive procedurally, you will need an intermediate reg and a continuous assign-
ment to drive it. All three of these approaches accomplish the same thing:

modul e adder (phi 1, bus, l oada, l oadb, dr i ve) ;
i nput phi 1, l oad, dr i ve;
i nout [7: 0] bus;

r eg [7: 0] opa, opb;

/ / Two l oad- qual i f i ed l at ches t o hol d oper ands
al ways @(phi 1 or bus or l oada or l oadb)

i f (phi 1)
begi n

i f (l oada) opa = bus;
i f (l oadb) opb = bus;

end

/ / You can do i t t hi s way -

HO #7 Wei
CS 148 Spring 2002

10 Verilog According to Tom

assi gn bus = dr i ve ? opa + opb : 8’ bz;

/ / Or t hi s way -

r eg [7: 0] sum;
assi gn bus = dr i ve ? sum : 8’ bz;
al ways @(opa or opb) sum = opa + opb;

/ / Or t hi s way -

r eg [7: 0] busout ;
assi gn bus = busout ;
al ways @(opa or opb or dr i ve)

busout = dr i ve ? opa + opb : 8’ bz;

endmodul e

Remember that even for buses, the module port can be an output rather than an inout if the
value isn’ t used as an input in that module because pure outputs can also be driven with a
Z.

3.3 State Machines

There are a lot of ways to make state machines. This section describes a methodical way
of writing state machine descriptions. The resulting code and hardware are hopefully easy
to understand and modify.

First, decide whether you want a Moore or a Mealy machine. The organization of the code
will differ for the two machine types.

Figure 2. illustrates which type of machine is which. A Moore machine’s outputs depend
only on its state, while a Mealy machine’s outputs depend on its state and inputs. A Mealy
machine typically has fewer states than a Moore machine for the same function. System
timing constraints are less obvious for systems containing Mealy machines.

Represent the state with one register, either a flop or a master-slave latch pair. Use the pre-
processor or parameters to give the states symbolic names. Case statements in always
blocks work well for specifying next-state logic and decode logic. If you want to make a
Moore machine, it may be a good idea to keep the next-state logic and the output decode
logic in separate always blocks. The following example is deliberately long-winded for
what it accomplishes, in order to illustrate the desired coding style.

CS148/ES278 HO #5
Spring 2004 Verilog

Verilog According to Tom 11

/ / Mi ckey- mouse par i t y machi ne
/ / (Mast er - sl ave l at ches f or st at e)

r eg st at e_s1, st at e_s2;

/ / Sl ave st at e l at ch
al ways @(phi 1 or st at e_s1)

i f (phi 1) st at e_s2 = st at e_s1;

/ / Mast er st at e l at ch & next - st at e l ogi c
al ways @(phi 2 or i n or st at e_s2)

case (st at e_s2)
‘ ODD:

i f (i n)
st at e_s1 = EVEN;

el se
st at e_s1 = ODD;

‘ EVEN:
i f (i n)

st at e_s1 = ODD;
el se

st at e_s1 = EVEN;

Figure 2. Moore and Mealy Machines

Moore Mealy

0

1

0 1 0/1 1/0

Clk

Next-State
Logic

O
ut

pu
t D

ec
od

e

S
ta

te

Clk

S
ta

te

Next-State/
Output
Logic

inputs

outputs

HO #7 Wei
CS 148 Spring 2002

12 Verilog According to Tom

endcase

/ / Out put l ogi c
al ways @(st at e_s2)

case (st at e_s2)
‘ EVEN: out = 0;
‘ ODD: out = 1;
/ / We want combi nat i onal l ogi c her e, so:
def aul t : out = 1’ bx;

endcase

3.3.1 Synopsys State-Machine targeting

If you want a single edge-triggered state machine, (you probably don’ t,) there is a way to
specify the state encoding with the Verilog parameter mechanism and some pseudo-com-
ment directives for the benefit of the FSM Compiler in Synopsys. The ordinary Synopsys
Design Compiler will synthesize state machines as they are described, but the FSM Com-
piler can manipulate state encodings in order to get better answers.

4.0 Coding Style

A uniform coding style may seem unnecessarily restrictive, but there are many advan-
tages. Other people will understand your code more easily, a big plus if you are part of a
team or even if you ever need some help. Certain good habits can protect you from entire
classes of errors. Finally, tools other than the Verilog simulator that accept Verilog as
input may restrict what the code can look like.

4.1 General Guidelines

• Write one module per file. You can find stuff easily, multiple people can work on one
system, the design can be sent piecemeal to other tools, and it’s easy to swap sub-
systems.

• Don’t write modules as primitive as “ latch” , “mux” , and “driver” , they are as easy to
express in Verilog when needed as they are to instantiate.

• Beware of describing hardware that cannot be started. Initial blocks have no hardware
counterpart, nor do comparisons to X (===, !==, ??????casex)

4.2 Documentation

Documentation - you know, comments! (Ugh!)

• Write a large comment near the header of each module that describes its context. People
will be more able to find their way around your design hierarchy.

• Use vertical or horizontal whitespace to keep code and comments apart.

• As usual, point out subtleties

CS148/ES278 HO #5
Spring 2004 Verilog

Verilog According to Tom 13

4.3 Targeting Synopsys

Synopsys accepts a subset of Verilog. Aside from following the guidelines in this section:

• Bit field indices cannot be variables, Synopsys won’t synthesize the required shifter nor
can it determine the width of the result.

If you are synthesizing more than random/control logic:

• Synopsys cannot synthesize memories or dividers.

• You will save hardware by manually grouping common subexpressions.

4.4 Naming Conventions

• Have one module per file, and name the file and the module the same thing.

• Often, a module has exactly one instantiation in a system. If so, name the module and
the instantiation the same thing.

• Formal/Actual name mapping can take place in every module instantiation. Make every
effort to use the same name for a given circuit node everywhere in the system’s hierar-
chy. Unless modules have multiple instantiations, you will be able to do this.

4.4.1 Identifier Suffixes

Choose a convention for labeling every node identifier with a suffix which describes
assertion level, clock timing-type, and other good information (pipeline stage names, for
example) both to avoid mistakes and to aid documentation.

When all identifiers have suffixes, inspection or automatic tools can help to find errors and
inconsistencies.

4.4.2 Abbreviations

When you name something, avoid abbreviating words to less than three letters. Everybody
may know what an ALU is, but there are a lot of common words that want the same one or
two-letter abbreviations. What abbreviations you use, use uniformly.

Suggestions:
Register reg
Address addr (not add or adr)
Drive drv
Result res
Bus bus
Immediate imm
Load load (not ld)
Store store (not st)

HO #7 Wei
CS 148 Spring 2002

14 Verilog According to Tom

4.5 Procedural Pitfalls

Don’ t mix delay timing control with event timing control, the meaning of your code will
quickly evade you. Each always block should have a single event control list at its begin-
ning.

The statements in an always block execute in sequence. The sequencing often implies pri-
ority that you didn’ t intend, but synthesis tools will build unnecessary hardware, not
knowing any better.

Procedural Verilog semantics allow for the possibility of some very subtle problems.
Incomplete event control lists and unintentional implication of latches cause a lot of bugs.
The real dangers of both of these common errors are that both lead to models which
appear to simulate correctly but synthesize incorrectly and that both can be very difficult
to casually notice.

4.5.1 Incomplete Event Control L ists

Always blocks that specify combinational logic and/or flow latches should execute any
time that any input changes. If an input is missing from the event control list, that input
will have unwanted state behavior, as if it were connected through some strange sort of
flop or latch.

Every value referenced in a combinational or flow-latch always block should be included
in the event control list. Referenced values include:

• Operands in expressions

• If and case arguments

• Reg subscripts on the left-hand side of an assignment

A subscripted reg should be in the event control list with the same subscript it is refer-
enced with. If it is used with multiple subscripts, they should all be on the list. Example:

al ways @(f oo or memaddr or r eg[aspec] or
r eg[bspec] or aspec or bspec)

begi n
i f (f oo)

mem[memaddr] = r eg[aspec] ;
el se

mem[memaddr] = r eg[bspec] ;
cspec = aspec | bspec;

4.5.2 Unwanted Implicit State

A reg keeps the value of its last assignment until it is assigned to again. If a reg is assigned
to on some path of execution through an always block but not on all paths, it behaves as a
latch. Make sure that non-latch reg variables are assigned to through every path - both
arms of ifs, and all arms of cases. A case should have a default even if all possible inputs

CS148/ES278 HO #5
Spring 2004 Verilog

Verilog According to Tom 15

match some label. You may want to assign a default value (perhaps X) to variables early
in the always block.

5.0 Running the Simulator

The Verilog simulator only runs on the SUN machines in G123 (lab-1002.fas.harvard.edu
and piezo1.fas.harvard.edu).

We will be using a specially compiled version of verilog called rsimverilog with hooks
added in to be able to create irsim cmd file directly from verilog. It’s just like the normal
verilog but... invoke as...

> r s i mver i l og <filename>. v

Simply invoke Verilog with all of your source files as command-line arguments, and they
will be compiled and run. If you have specified a waveform analyzer, it will appear. You
may have to send a Ctrl-C to make the simulator pause the execution of your model and
give you a prompt.

From the prompt, you can send a Ctrl-D to exit the simulator, or begin using Verilog inter-
actively as described in section 5.2. With execution paused, you can also use the analyzer.

5.1 System Tasks

You can insert calls to special system tasks in blocks of procedural code. All system task
names begin with the character $.

Some system tasks “execute” fully as they are encountered. $display and $stop are exam-
ples of such tasks, which you would use in always blocks. Others like $monitor and
$gr_waves instantiate processes which continue to run after they are executed. You would
probably put calls to such tasks in initial blocks.

• $display
$display corresponds to printf in C. The first, optional argument is a format string, like
C except that “%h” is hexadecimal, not “%x”, and there are formats “%t” for times and
“%m” for hierarchical names.

• $stop
When Verilog encounters a $stop, it pauses as if you sent a Ctrl-C.

• $finish
Verilog exits as if you sent Ctrl-D when it encounters $finish.

• $monitor
Verilog instantiates a process which, for all subsequent time, prints its arguments
according to the optional format string as in $display whenever one of those arguments
changes in the course of simulation.

HO #7 Wei
CS 148 Spring 2002

16 Verilog According to Tom

• $time
$time is not a system task, but a system variable which can be especially useful as an
argument to $display or $monitor.

• $gr_waves, $gr_addwaves
Both of these tasks instantiate processes which set up waveform analyzer traces and
update them during subsequent simulation. Section 5.3 has more on the analyzer.

5.2 Debugging in Interactive Mode

The command-line argument “ -s” will cause Verilog to begin in interactive mode rather
than immediately starting execution. You may want just that if your model is screwing up
early on.

5.2.1 Seeing Out-of-Scope Nodes

Verilog has a mechanism and syntax for accessing values from lower scopes than the cur-
rent module. Such access would be a bad practice for modeling, but it can be very useful
for instrumenting and debugging, especially with $gr_waves.

5.2.2 Interactive Mode

Things you type at the interactive prompt execute as if they were in a sort of initial block.
There are several Verilog constructs that are handy in interactive mode, and there are
some system tasks intended specifically to be used interactively.

• $scope
You can set the current default scope, analogously to “cd” in Unix, with the $scope
command.

• $showscopes
$showscopes prints all of the modules, tasks, and functions in the current scope.

• $showvars
$showvars displays the status of Verilog “variables” . $showvars is useful for debugging
multi-driver busses, because it is the one way to see what the individual drivers are try-
ing to put on the wire, rather than the overall “X” you usually see.

• $list
$list prints the source text for the current scope, annotated with the current values of
variables.

• ,
A comma will step the execution through a single statement.

• .
A period will resume execution to the next $stop or Ctrl-C.

Verilog interactive mode allows the forever construct, which is like an always construct.
The usual timing controls are available, so you can set breakpoints in many ways:

CS148/ES278 HO #5
Spring 2004 Verilog

Verilog According to Tom 17

#10000 $st op; / / St op af t er 10, 000 t i me uni t s
f or ever @(posedge c l k) $st op; / / s t op at each c l ock cycl e
f or ever @(opcode)

i f (opcode==72) $st op; / / s t op when “ opcode” becomes 72

Break conditions could possibly be quite complex.

5.3 The Waveform Analyzer

If Verilog executes a $gr_waves task, it opens a graphics window and keeps it updated
with the history of the values of the variables you want to monitor.

History prior to the $gr_waves call does not get recorded, so $gr_waves calls are almost
always in initial blocks.

Only one $gr_waves call is allowed. More signals can be added to the analyzer with the
variation $gr_addwaves. $gr_addwaves might be useful interactively, if old values are not
of interest.

You will often want to access out-of-scope values with the analyzer, so it makes sense to
put all of your $gr_waves and $gr_addwaves calls in an initial block in the topmost mod-
ule in your system, where all nodes are accessible.

/ / Somewher e i n a t op- l evel modul e. . .
i ni t i al

begi n
$gr _waves(“ Phi 1” , phi 1, “ Phi 2” , phi 2) ;
$gr _addwaves(“ T” , dat apat h. t bus, “ S” , dat apat h. sbus) ;
$gr _addwaves(“ Reset ” , r eset) ;
$gr _addwaves(“ bogus s i gnal ” , i nt er f ace. cont r ol l er . f oo) ;

end

When the simulator is not executing, you can use a mouse to manipulate the waveform
display. The first and second buttons move and swap the two cursors, the third moves the
time axis. A menu of pushbuttons allows zooming, among other things.

