
SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your web site

 Make learning easy and fun

PA
N

TO
N

E
 2955 C

PA
N

TO
N

E
 O

range 021 C

C
M

Y
K

 100, 45, 0, 37
C

M
Y

K
 O

, 53, 100, 0

B
lack 100%

B
lack 50%

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $39.95

WEB PROGRAMMING

CAD $51.95

ISBN: 978-0-9758419-9-0

SAVE TIME AND FRUSTRATION WITH
THIS COMPREHENSIVE COLLECTION OF
READY-TO-USE PHP 5 SOLUTIONS!

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

The PHP Anthology: 101 Essential Tips, Tricks & Hacks,
2nd Edition is a collection of powerful PHP 5 solutions to
the most common programming problems.

Five world-class developers guide you through the
capabilities of PHP using countless examples of best-
practice programming. All solutions are fully explained and
the ready-to-use code is available for download.

This is a must-have companion for any PHP coder looking to
dive into more complex PHP 5 solutions.

Manage errors gracefully. �
Build functional forms, tables, and SEO-friendly URLs. �
Reduce load time with client- and server-side caching. �
Produce and utilize web services with XML. �
Secure your site using access control systems. �
Easily work with files, emails, and images. �

And much more…

SOLUTIONS TO THE MOST COMMON PROGRAMMING PROBLEMS

THE PHP
ANTHOLOGY

101 ESSENTIAL TIPS, TRICKS & HACKS

P
H

P
TH

E
 P

H
P

 A

N
TH

O
LO

G
Y

101 E

S
S

E
N

TIA
L TIP

S
, TR

IC
K

S
 &

 H
A

C
K

S

SHAFIK, FUECKS
ET AL.

2ND EDITION

BY DAVEY SHAFIK
MATTHEW WEIER O’PHINNEY

LIGAYA TURMELLE
HARRY FUECKS

BEN BALBO

benbalbo.com

BEN
BALBO

PHP ‘ALL STAR TEAM’

phppatterns.com

HARRY
FUECKS

weierophinney.net/matthew/

MATTHEW
WEIER
O’PHINNEY

pixelated-dreams.com

DAVEY
SHAFIK

khankennels.com/blog/

LIGAYA
TURMELLE

phppatterns.com

DAVEY
SHAFIK

coverphpant2.indd 1 6/27/2008 1:45:25 PM

The PHP Anthology:

101 Essential Tips, Tricks and Hacks, 2nd Edition

(Chapters 2, 10, and 11)

Thank you for downloading these sample chapters of The PHP Anthology 101
Essential Tips, Tricks, and Hacks, 2nd Edition, published by SitePoint.

This excerpt includes the Summary of Contents, Information about the Author,
Editors and SitePoint, Table of Contents, Preface, three chapters from the
book, and the index.

We hope you find this information useful in evaluating this book.

For more information, visit sitepoint.com

http://www.sitepoint.com/launch/c0688d

Summary of Contents of this Excerpt
Preface..xi

2. Using Databases with PDO..39

10. Access Control..269

11. Caching...363

Index..505

Summary of Additional Book Contents
1. Introduction..39

3. Strings..77

4. Dates and Times..95

5. Forms, Tables, and Pretty URLs..115

6. Working with Files...147

7. Email...179

8. Images..197

9. Error Handling...237

12. XML and Web Services...395

13. Best Practices..435

A. PHP Configuration..473

B. Hosting Provider Checklist...483

C. Security Checklist..489

D. Working with PEAR...497

THE PHP
ANTHOLOGY

101 ESSENTIAL TIPS, TRICKS & HACKS
BY DAVEY SHAFIK

MATTHEW WEIER O’PHINNEY
LIGAYA TURMELLE
HARRY FUECKS

BEN BALBO
2ND EDITION

iv

The PHP Anthology: 101 Essential Tips, Tricks & Hacks
by Davey Shafik, Matthew Weier O’Phinney, Ligaya Turmelle, Harry Fuecks, and Ben

Balbo

Copyright © 2007 SitePoint Pty. Ltd.

Expert Reviewer: Jason Sweat Editor: Georgina Laidlaw

Managing Editor: Simon Mackie Editor: Hilary Reynolds

Technical Editor: Andrew Tetlaw Index Editor: Fred Brown

Technical Director: Kevin Yank Cover Design: Alex Walker

Printing History:

First Edition: December, 2003

Second Edition: October, 2007

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embedded in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9758419-9-0

Printed and bound in the United States of America

mailto:business@sitepoint.com

v

Ben Balbo

Ben Balbo was born in Germany, grew up in the UK, lives in Melbourne, and likes Guinness.

While he isn’t drinking Guinness (which is most of the time in Melbourne, as it just doesn’t

taste the same), he earns a living as a PHP developer and trainer, security consultant, and

Open Source developer. He has been known to talk in public about web development-related

topics, which comes as part of the package of being on the committees of both the Melbourne

PHP User Group and Open Source Developers’ Club. Although he wouldn’t admit this, he

participates at this level only in order to go to restaurants or pubs after the meetings.

Harry Fuecks

Harry Fuecks1 is a technical writer, programmer, and system engineer. He has worked in

corporate IT since 1994, having completed a Bachelor’s degree in Physics. He first came

across PHP in 1999, while putting together a small intranet. Today, he’s the lead developer

of a corporate extranet, where PHP plays an important role in delivering a unified platform

for numerous back office systems. In his off hours he writes technical articles for SitePoint

and runs phpPatterns,2 a site exploring PHP application design. Originally from the United

Kingdom, he now lives in Switzerland. Harry is the proud father of a beautiful baby girl who

keeps him busy all day (and night!).

Davey Shafik

Davey Shafik is a full-time PHP developer with ten years’ experience in PHP and related

technologies. An avid magazine writer, book author, and speaker, Davey keeps his mind

sharp by trying to tackle problems from a unique perspective from his home in Central

Florida where he lives with five cats and more computers.

Ligaya Turmelle

Ligaya Turmelle is a full-time goddess, occasional PHP programmer, and obsessive world

traveler. Actively involved with the PHP community as a founding Principal of phpwomen.org,

administrator at codewalkers.com, roving reporter for the Developer Zone on Zend.com, and

PHP blogger and long-time busybody of #phpc on freenode, she hopes to one day actually

meet the people she talks to. When not sitting at her computer staring at the screen, Ligaya

can usually be found either playing golf, scuba diving, snorkeling, kayaking, hiking, or just

playing with the dogs outside. Ligaya Turmelle is a Zend Certified Engineer.

1 Harry Fuecks photo credit: Bruno Gerber http://www.flickr.com/photos/beegee74/231137320/
2 http://www.phppatterns.com/

http://www.phppatterns.com/
http:phpwomen.org
http:codewalkers.com
http:Zend.com
http://www.flickr.com/photos/beegee74/231137320/
http://www.phppatterns.com/

vi

Matthew Weier O’Phinney

Matthew Weier O’Phinney is a full-time father of two and spends his free time developing

in PHP. He is a PEAR developer, core contributor to Zend Framework, and all-around PHP

5 proponent—though PHP 6 cannot come soon enough for him.

About the Expert Reviewer

Jason Sweat has used PHP since 2001, where he was searching for a free—as in beer—substi

tute for IIS/ASP to create an accounting system for a home business. His Unix administrator

pointed him towards Linux, Apache, and PHP. He has since adopted PHP as an intranet de

velopment standard at work, as well as using PHP in a Unix shell scripting environment. He

is the author of php|architect's Guide to PHP Design Patterns (Toronto: Marco Tabini & As

sociates, 2005), and was a co-author of PHP Graphics Handbook (Birmingham: Wrox 2003),

has published several articles for the Zend web site and for php|architect magazine, and has

presented numerous talks on PHP at various conferences. Jason is a Zend Certified Engineer,

and maintains a blog at http://blog.casey-sweat.us/.

About the Technical Editor

Andrew Tetlaw has been tinkering with web sites as a web developer since 1997 and has

also worked as a high school English teacher, an English teacher in Japan, a window cleaner,

a car washer, a kitchen hand, and a furniture salesman. At SitePoint he is dedicated to making

the world a better place through the technical editing of SitePoint books and kits. He is also

a busy father of five, enjoys coffee, and often neglects his blog at http://tetlaw.id.au/.

About the Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica

tions—books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint,

but is best known for his book, Build Your Own Database Driven Website Using PHP &

MySQL. Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy

theatre and flying light aircraft.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and

community forums.

http://blog.casey-sweat.us/
http://tetlaw.id.au/
http://www.sitepoint.com/

Table of Contents

Preface . xv

Who Should Read this Book? . xvi

What’s Covered in this Book? . xvii

Running the Code Examples . xix

The Book’s Web Site . xx

The SitePoint Forums . xxi

The SitePoint Newsletters . xxi

Your Feedback . xxi

Conventions Used in this Book . xxi

Chapter 1 Introduction . 1

Where do I get help? . 2

What is OOP? . 9

How do I write portable PHP code? . 33

Summary . 38

Chapter 2 Using Databases with PDO 39

What is PDO? . 40

How do I access a database? . 41

How do I fetch data from a table? . 44

How do I resolve errors in my SQL queries? . 49

How do I add data to, or modify data in, my database? 53

How do I protect my web site from an SQL injection attack? 55

How do I create flexible SQL statements? . 57

How do I find out how many rows I’ve touched? 59

viii

How do I find out a new INSERT’s row number in an autoincrementing

field? . 62

How do I search my table? . 63

How do I work with transactions? . 65

How do I use stored procedures with PDO? . 67

How do I back up my database? . 69

Summary . 75

Chapter 3 Strings . 77

How do I output strings safely? . 79

How do I preserve formatting? . 81

How do I strip HTML tags from text? . 82

How do I force text to wrap after a certain number of characters? 84

How do I perform advanced search and replace operations? 84

How do I break up text into an array of lines? . 86

How do I trim whitespace from text? . 88

How do I output formatted text? . 88

How do I validate submitted data? . 90

Summary . 94

Chapter 4 Dates and Times . 95

How do I use Unix timestamps? . 96

How do I obtain the current date? . 98

How do I find a day of the week? . 101

How do I find the number of days in a month? 101

How do I create a calendar? . 102

How do I store dates in MySQL? . 107

How do I format MySQL timestamps? . 109

How do I perform date calculations using MySQL? 111

Summary . 112

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

ix

Chapter 5 Forms, Tables, and Pretty URLs . . . 115

How do I build HTML forms with PHP? . 116

How do I display data in a table? . 127

How do I display data in a sortable table? . 130

How do I create a customized data grid? . 134

How do I make “pretty” URLs in PHP? . 139

Summary . 145

Chapter 6 Working with Files . 147

How do I read a local file? . 148

How do I use file handles? . 153

How do I modify a local file? . 155

How do I access information about a local file? 157

How do I examine directories with PHP? . 160

How do I display PHP source code online? . 161

How do I store configuration information in a file? 163

How do I access a file on a remote server? . 166

How do I use FTP from PHP? . 167

How do I manage file downloads with PHP? . 170

How do I create compressed ZIP/TAR files with PHP? 172

How do I work with files using the Standard PHP Library in PHP

5? . 174

Summary . 177

Chapter 7 Email . 179

How do I send a simple email? . 179

How do I simplify the generation of complex emails? 182

How do I add attachments to messages? . 184

How do I send HTML email? . 186

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

x

How do I mail a message to a group of people? 188

How do I handle incoming mail with PHP? . 191

How can I protect my site against email injection attacks? 193

Summary . 195

Chapter 8 Images . 197

How do I specify the correct image MIME type? 198

How do I create thumbnail images? . 199

How do I resize images without stretching them? 202

How can I put together a simple thumbnail gallery? 214

How do I extract EXIF information from images? 217

How do I add a watermark to an image? . 220

How do I display charts and graphs with PHP? . 223

How do I prevent the hotlinking of images? . 230

How do I create images that can be verified by humans only? 234

Summary . 235

Chapter 9 Error Handling . 237

What error levels does PHP report? . 238

What built-in settings does PHP offer for error handling? 239

How can I trigger PHP errors? . 241

How do I implement a custom error handler with PHP? 242

How do I log and report errors? . 247

How can I use PHP exceptions for error handling? 248

How do I create a custom Exception class? . 252

How do I implement a custom exception handler with PHP? 257

How can I handle PHP errors as if they were exceptions? 260

How do I display errors and exceptions gracefully? 261

How do I redirect users to another page following an error

condition? . 265

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

xi

Summary . 267

Chapter 10 Access Control . 269

How do I use HTTP authentication? . 271

How do I use sessions? . 277

How do I create a session class? . 281

How do I create a class to control access to a section of the site? 283

How do I build a registration system? . 297

How do I deal with members who forget their passwords? 318

How do I let users change their passwords? . 330

How to do I build a permissions system? . 339

How do I store sessions in a database? . 353

Summary . 362

Chapter 11 Caching . 363

How do I prevent web browsers from caching a page? 365

How do I control client-side caching? . 367

How do I examine HTTP headers in my browser? 371

How do I cache file downloads with Internet Explorer? 372

How do I use output buffering for server-side caching? 373

How do I cache just the parts of a page that change infrequently? . . 377

How do I use PEAR::Cache_Lite for server-side caching? 382

What configuration options does Cache_Lite support? 385

How do I purge the Cache_Lite cache? . 389

How do I cache function calls? . 390

Summary . 392

Chapter 12 XML and Web Services 395

Which XML technologies are available in PHP 5? 396

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

xii

Why should I use PHP’s XML extensions instead of PHP string

functions? . 396

How do I parse an RSS feed? . 398

How do I generate an RSS feed? . 405

How do I search for a node or content in XML? 409

How can I consume XML-RPC web services? . 412

How do I serve my own XML-RPC web services? 416

How can I consume SOAP web services? . 420

How do I serve SOAP web services? . 423

How can I consume REST services? . 425

How can I serve REST services? . 431

Summary . 433

Chapter 13 Best Practices . 435

How do I track revisions to my project’s code? . 436

How can I maintain multiple versions of a single codebase? 438

How can I write distributable code? . 441

How can I document my code for later reference by myself or

others? . 448

How can I ensure future changes to my code won’t break current

functionality? . 454

How can I determine what remains to be tested? 463

I’ve reviewed some of my old code, and it’s horrible. How can I make

it better? . 467

How can I deploy code safely? . 468

Summary . 471

Appendix A PHP Configuration . 473

Configuration Mechanisms . 473

Key Security and Portability Settings . 475

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

xiii

Includes and Execution Settings . 475

Error-related Settings . 480

Miscellaneous Settings . 481

Appendix B Hosting Provider Checklist 483

General Issues . 483

PHP-related Issues . 485

Appendix C Security Checklist . 489

Top Security Vulnerabilities . 489

Appendix D Working with PEAR 497

Installing PEAR . 498

The PEAR Package Manager . 501

Installing Packages Manually . 503

Alternatives to PEAR . 504

Index . 505

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Preface

One of the great things about PHP is its vibrant and active community. Developers

enjoy many online meeting points, including the SitePoint Forums,1 where de

velopers get together to help each other out with problems they face on a daily basis,

from the basics of how PHP works, to solving design problems like “How do I val

idate a form?” As a way to get help, these communities are excellent—they’re replete

with all sorts of vital fragments you’ll need to make your projects successful. But

putting all that knowledge together into a solution that applies to your particular

situation can be a challenge. Often, community members assume other posters have

some degree of knowledge; frequently, you might spend a considerable amount of

time pulling together snippets from various posts, threads, and users (each of whom

has a different programming style) to gain a complete picture.

The PHP Anthology: 101 Essential Tips, Tricks & Hacks, 2nd Edition is, first and

foremost, a compilation of the best solutions provided to common PHP questions

that turn up at the SitePoint Forums on a regular basis, combined with the experi

ences and insights our authors have gained from their many years of work with

PHP.

What makes this book a little different from others on PHP is that it steps away from

a tutorial style, and instead focuses on the achievement of practical goals with a

minimum of effort. To that extent, you should be able to use many of the solutions

provided here in a plug-and-play manner, without having to read this book from

cover to cover. To aid you in your endeavours, each section follows a consistent

question-and-solution format. You should be able to scan the table of contents and

flip straight to the solution to your problem.

That said, threaded throughout these discussions is a hidden agenda. As well as

solutions, this book aims to introduce you to techniques that can save you effort,

and help you reduce the time it takes to complete and maintain your web-based

PHP applications.

Although it was originally conceived as a procedural programming language, in

recent years PHP has proven increasingly successful as a language for the develop

1 http://www.sitepoint.com/forums/forumdisplay.php?f=34

http://www.sitepoint.com/forums/forumdisplay.php?f=34
http://www.sitepoint.com/forums/forumdisplay.php?f=34

xvi

ment of object oriented solutions. With the release of PHP 5, PHP gained a completely

rewritten and more capable object model. This has been further reinforced by the

fact that on July 13, 2007 the PHP development team made the end-of-life announce

ment for PHP 4.

The object oriented paradigm seems to scare many PHP developers, and is often

regarded as being off limits to all but the PHP gurus. What this book will show you

is that you don’t need a computer science degree to take advantage of the object

oriented features and class libraries available in PHP 5 today.

The PHP Extension and Application Repository, known as PEAR,2 provides a

growing collection of reusable and well-maintained solutions for architectural

problems (such as web form generation and validation) regularly encountered by

PHP developers around the world. Wherever possible in the development of the

solutions provided in this book, we’ve made use of freely available libraries that

our authors have personally found handy, and which have saved them many hours

of development.

The emphasis this book places on taking advantage of reusable components to build

your PHP web applications reflects another step away from the focus of many current

PHP-related books. Although you won’t find extensive discussions of object oriented

application design, reading The PHP Anthology: 101 Essential Tips, Tricks & Hacks,

2nd Edition from cover to cover will, through a process of osmosis, help you take

your PHP coding skills to the next level, setting you well on your way to constructing

applications that can stand the test of time.

The PHP Anthology: 101 Essential Tips, Tricks & Hacks, 2nd Edition will equip

you with the essentials with which you need to be confident when working the

PHP engine, including a fast-paced primer on object oriented programming with

PHP (see “What is OOP?” in Chapter 1). With that preparation out of the way, the

book looks at solutions that could be applied to almost all PHP-based web applica

tions, the essentials of which you may already know, but have yet to fully grasp.

Who Should Read this Book?
If you’ve already gotten your feet wet with PHP, perhaps having read Kevin Yank’s

Build Your Own Database Driven Website Using PHP & MySQL, 3rd Edition (Site

2 http://pear.php.net/

The PHP Anthology (www.sitepoint.com)

http://pear.php.net/
http://www.sitepoint.com/launch/c0688d
http://pear.php.net/

xvii

Point, Melbourne, ISBN 0-9752402-1-8), and completed your first project or two

with PHP, then this is the book for you.

If you’ve been asking questions like "How do I validate a web page form?”, “How

do I add a watermark to my photos?”, or “How do I send automated email messages

from my web application?”, you’ll find the answers to those questions in this book.

If you have the drive to progress your skills or improve your web application through

concepts such as reusable components, caching performance, or web services, then

you will find this book to be an excellent primer.

What’s Covered in this Book?
Here’s what you’ll find in each of the chapters of this book:

Chapter 1: Introduction

This chapter provides a useful guide to finding help through the PHP manual

and other resources. It includes an introduction object oriented programming:

a run-down of PHP’s class syntax, as well as a primer that explains how all the

key elements of the object oriented paradigm apply to PHP. It’s essential prepar

atory reading for later chapters in this anthology. This chapter also provides

tips for writing portable code, and gives us the chance to take a look at some of

the main PHP configuration pitfalls.

Chapter 2: Using Databases with PDO

This chapter provides you with everything you’ll need to get up to speed with

the PHP Data Objects (PDO) extension. We start with the basics, covering im

portant topics such as how to write flexible SQL statements and avoid SQL in

jection attacks. We then delve into many lesser-known aspects, such as searching,

working with transactions and stored procedures, and how to back up your

database.

Chapter 3: Strings

This chapter explores the details of handling content on your site. We’ll discuss

string functions you can’t live without, along with the process for validating

and filtering user-submitted content.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

xviii

Chapter 4: Dates and Times

Here, you’ll learn how to how to use PHP’s date functions, and implement an

online calendar. You’ll also obtain a solid grounding in the storage and manip

ulation of dates in MySQL.

Chapter 5: Forms, Tables, and Pretty URLs

The essentials of web page forms and tables are covered here. We’ll discuss the

development of forms with PEAR::HTML_QuickForm, and you’ll see how to

use PEAR::HTML_Table to implement data grids and paged result sets. We’ll

also take a look at some tricks you can use with Apache to generate search engine

friendly URLs.

Chapter 6: Working with Files

This chapter is a survival guide to working with files in PHP. Here, we’ll cover

everything from gaining access to the local file system, to fetching files over a

network using PHP’s FTP client. We’ll go on to learn how to create your own

zipped archives with PEAR::Archive_Tar, and touch on the use of the Standard

PHP Library.

Chapter 7: Email

In this chapter, we deal specifically with email-related solutions, showing you

how to take full advantage of email with PHP. We’ll learn to successfully send

HTML emails and attachments with help from PEAR::Mail and

PEAR::Mail_Mime, and to use PHP to easily handle incoming mails delivered

to your web server.

Chapter 8: Images

This chapter explores the creation of thumbnails and explains how to watermark

images on your site. We’ll also discuss how you can prevent hotlinking from

other sites, create an image gallery complete with Exif data, and produce a few

professional charts and graphs—as well as CAPTCHA images—with JpGraph.

Chapter 9: Error Handling

Understand PHP’s error reporting mechanism, how to take advantage of PHP’s

custom error handling features, and how to handle errors gracefully—with a

focus on exception handling and custom exceptions—in this action-packed

chapter.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

xix

Chapter 10: Access Control

Beginning with basic HTTP authentication, then moving on to application-level

authentication, this chapter looks at the ways in which you can control access

to your site. Later solutions look at implementing a user registration system,

and creating a fine-grained access control system with users, groups, and per

missions.

Chapter 11: Caching

This chapter takes the fundamental view that HTML is fastest, and shows you

how you can take advantage of caching on both the client and server sides to

reduce bandwidth usage and dramatically improve performance. It covers HTTP

headers, output buffering, and using PEAR:Cache_Lite.

Chapter 12: XML and Web Services

With XML rapidly becoming a crucial part of almost all web-based applications,

this chapter explores the rich XML capabilities of PHP 5. Here, you’ll discover

how easy it is to produce and consume web services based on RSS, XML-RPC,

SOAP, and REST.

Chapter 13: Best Practices

The goal of this chapter is to examine some of the techniques that have proven

themselves in helping development projects succeed. The discussion covers

code versioning, how to write distributable code, how to add API documentation

to your work, how to reduce bugs with unit testing, and how to deploy code

safely.

Running the Code Examples
To run the code examples in this book you will need to ensure you have all the re

quired software, libraries, and extensions. Some of the examples make use of addi

tional packages that will need to be installed separately. Where solutions requiring

additional packages are introduced you will find a link to the relevant web page;

be sure to read the documentation, including the installation instructions.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

xx

The following packages are used in the examples in this book:

■	 PHP 5.21 (including the GD, EXIF, and XML-RPC extensions)

■	 PEAR: http://pear.php.net/ (including Archive_Tar, Cache_Lite, HTML_Table,

HTML_QuickForm, Mail, Net_FTP, Structures_DataGrid, and Validate)

■	 Zend Framework: http://framework.zend.com/

■	 JpGraph: http://www.aditus.nu/jpgraph/

To run all the examples you will also need a web server, database server, email

server and FTP server, although instructions for their installation and configuration

are out of scope for this book. If you want to setup a software environment for

learning PHP you can’t go past the XAMPP

(http://www.apachefriends.org/en/xampp.html) server package for ease of installation

and use. It is also available for a variety of operating systems.

The Windows version of XAMPP has all of the following components (and more)

wrapped up in a single package with a convenient web interface for management:

■	 PHP 5 and PEAR

■	 Apache HTTP Server: http://httpd.apache.org/

■	 MySQL Database Server: http://mysql.org/

■	 Mercury Mail Transport System: http://www.pmail.com/

■	 Filezilla FTP server: http://filezilla-project.org/

Some examples in the book make specific use of the Apache HTTP Server and

MySQL Database Server.

The Book’s Web Site
Located at http://www.sitepoint.com/books/phpant2/, the web site that supports

this book will give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note file names above many of the code

listings. These refer to files in the code archive, a downloadable ZIP file that contains

all of the finished examples presented in this book. Simply click the Code Archive

link on the book’s web site to download it.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d
http://pear.php.net/
http://framework.zend.com/
http://www.aditus.nu/jpgraph/
(http://www.apachefriends.org/en/xampp.html)
http://httpd.apache.org/
http://mysql.org/
http://www.pmail.com/
http://filezilla-project.org/
http://www.sitepoint.com/books/phpant2/

xxi

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two

mistakes in this one. The Corrections and Typos page on the book’s web site3 will

provide the latest information about known typographical and code errors, and will

offer necessary updates for new releases of browsers and related standards.

The SitePoint Forums
If you’d like to communicate with other web developers about this book, you should

join SitePoint’s online community.4 The PHP forum,5 in particular, offers an

abundance of information above and beyond the solutions in this book, and a lot

of fun and experienced PHP developers hang out there. It’s a good way to learn new

tricks, get questions answered in a hurry, and just have a good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters includ

ing The SitePoint Tribune, The SitePoint Tech Times, and The SitePoint Design

View. Reading them will keep you up to date on the latest news, product releases,

trends, tips, and techniques for all aspects of web development. Sign up to one or

more SitePoint newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or if you wish to contact us for any

other reason, the best place to write is books@sitepoint.com. We have an email

support system set up to track your inquiries, and friendly support staff members

who can answer your questions. Suggestions for improvements as well as notices

of any mistakes you may find are especially welcome.

Conventions Used in this Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

3 http://www.sitepoint.com/books/phpant2/errata.php
4 http://www.sitepoint.com/forums/
5 http://www.sitepoint.com/forums/forumdisplay.php?f=34

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/books/phpant2/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?f=34
http://www.sitepoint.com/launch/c0688d
http://www.sitepoint.com/newsletter/
http:books@sitepoint.com
http://www.sitepoint.com/books/phpant2/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?f=34

xxii

Code Samples
Code in this book will be displayed using a fixed-width font like so:

<h1>A perfect summer's day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

If the code may be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

➥ets-come-of-age/");

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

xxiii

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure you Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Chapter2
Using Databases with PDO
In the “old days” of the Internet, most web pages were nothing more than text files

containing HTML. When people visited your site, your web server simply made the

file available to their browsers. This approach started out fine, but as web sites grew,

and issues such as design and navigation became more important, developers found

that maintaining consistency across hundreds of HTML files was becoming a massive

headache. To solve this problem, it became popular to separate variable content

(articles, news items, and so on) from the static elements of the site—its design and

layout.

If a database is used as a repository to store variable content, a server-side language

such as PHP performs the task of fetching that data and placing it within a uniform

layout template. This means that modifying the look and feel of a site can be handled

as a separate task from the maintenance of content. And maintaining consistency

across all the pages in a web site no longer consumes a developer’s every waking

hour.

PHP supports all the relational databases worth mentioning, including those that

are commonly used in large companies: Oracle, IBM’s DB2, and Microsoft’s SQL

Server, to name a few. The three most noteworthy open source alternatives are

40 The PHP Anthology

SQLite, PostgreSQL, and MySQL. PostgreSQL is arguably the best database of the

three, in that it supports more of the features that are common to relational databases.

SQLite is the perfect choice for smaller applications that still require database cap

ability. MySQL is a popular choice among web hosts that provide support for PHP,

and for this reason is typically easier to find than PostgreSQL.

This chapter covers all the common operations that PHP developers perform when

working with databases: retrieving and modifying data, and searching and backing

up the database. To achieve these tasks, we’ll use the built-in PDO extension, rather

than database-specific extensions. The examples we’ll work with will use a single

table, so no discussion is made of table relationships here. For a full discussion of

that topic, see Kevin Yank’s Build Your Own Database Driven Website Using PHP

& MySQL, 3rd Edition (SitePoint, Melbourne, 2006)1 .

The examples included here work with the MySQL sample database called “world,”

though all the interactions we’ll work through can be undertaken with any database

supported by PDO. The SQL file for the world database is available at

http://dev.mysql.com/doc/#sampledb and the instructions explaining its use can

be found at http://dev.mysql.com/doc/world-setup/en/world-setup.html.

What is PDO?
PDO, the PHP Data Objects extension, is a data-access abstraction layer. But what

the heck is that? Basically, it’s a consistent interface for multiple databases. No

longer will you have to use the mysql_* functions, the sqlite_* functions, or the

pg_* functions, or write wrappers for them to work with your database. Instead,

you can simply use the PDO interface to work with all three functions using the

same methods. And, if you change databases, you’ll only have to change the DSN

(or Data Source Name) of the PDO to make your code work.2

PDO uses specific database drivers to interact with various databases, so you can’t

use PDO by itself. You’ll need to enable the drivers you’ll use with PDO, so be sure

1 http://www.sitepoint.com/books/phpmysql1/

2 That’s all you’ll have to do so long as you write your SQL in a way that’s not database specific. If you

try to stick to the ANSI 92 standard [http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt],

you should generally be okay—most databases support that syntax.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/books/phpmysql1/
http://www.sitepoint.com/books/phpmysql1/
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.sitepoint.com/launch/c0688d
http://dev.mysql.com/doc/#sampledb
http://dev.mysql.com/doc/world-setup/en/world-setup.html
http://www.sitepoint.com/books/phpmysql1/
[http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt]

Using Databases with PDO 41

to research how to do it for your specific host operating system on the PDO manual
3page.

PDO is shipped with PHP 5.1 and is available from PECL for PHP 5.0. Unfortunately,

as PDO requires the new PHP 5 object oriented features, it’s not available for PHP

4. In this book, all of our interactions with the database will use PDO to interact

with the MySQL back end.

How do I access a database?
Before we can do anything with a database, we need to talk to it. And to talk to it,

we must make a database connection. Logical, isn’t it?

Solution
Here’s how we connect to a MySQL database on the localhost:

mysqlConnect.php (excerpt)

<?php
$dsn = 'mysql:host=localhost;dbname=world;';
$user = 'user';
$password = 'secret';
try
{
 $dbh = new PDO($dsn, $user, $password);
}
catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}
?>

We’d use this code to connect to a SQLite database on the localhost:

3 http://www.php.net/pdo/

Order the print version of this book to get all 500+ pages!

http://www.php.net/pdo/
http://www.php.net/pdo/
http://www.sitepoint.com/launch/c0688d
http://www.php.net/pdo/

42 The PHP Anthology

sqliteConnect.php (excerpt)

<?php
$dsn = 'sqlite2:"C:\sqlite\world.db"';
try
{
 $dbh = new PDO($dsn);
}
catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}
?>

And this code will let us connect to a PostgreSQL database on the localhost:

postgreConnect.php (excerpt)

<?php
$dsn = 'pgsql:host=localhost port=5432 dbname=world user=user ';
$dsn .= 'password=secret';
try
{
 $dbh = new PDO($dsn);
}
catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}
?>

Discussion
Notice that in all three examples above, we simply create a new PDO object. Only

the connection data for the PDO constructor differs in each case: for the SQLite and

PostgreSQL connections, we need just the DSN; the MySQL connection also requires

username and password arguments in order to connect to the database.4

4 We could have put the username and password information in the MySQL DSN, providing a full DSN,

but the average user has no cause to do this when using MySQL. It just adds unnecessary complexity to

the DSN.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 43

The DSN in Detail
As we saw above, DSN is an acronym for Data Source Name. The DSN provides the

information we need in order to connect to a database. The DSN for PDO has three

basic parts: the PDO driver name (such as mysql, sqlite, or pgsql), a colon, and

the driver-specific syntax. The only aspect that may be a bit confusing here is the

driver-specific syntax, as each driver requires different information. But have no

fear—the trusty manual is here, of course!

The manual describes the database driver-specific syntax that’s required in the DSN

for each of the PDO drivers. All you need to do is to go to the database driver page,5

select your database driver, and follow the link to the DSN information. For example,

the MySQL DSN page in the manual is found at

http://www.php.net/manual/en/ref.pdo-mysql.connection.php; it’s shown in Fig

ure 2.1.

Figure 2.1. The PDO_MySQL DSN manual page

5 http://www.php.net/manual/en/ref.pdo.php#pdo.drivers

Order the print version of this book to get all 500+ pages!

http://www.php.net/manual/en/ref.pdo.php#pdo.drivers
http://www.sitepoint.com/launch/c0688d
http://www.php.net/manual/en/ref.pdo-mysql.connection.php;
http://www.php.net/manual/en/ref.pdo.php#pdo.drivers

44 The PHP Anthology

DSN examples are also provided on each manual page to get you started.

Do Not Pass Credentials in the DSN

In the database connection examples we just saw, I included my access credentials

within the DSN, or in the $user and $pass variables, but I did so for illustration

purposes only. This is not standard—or appropriate—practice, since this inform

ation can by misused by malicious parties to access your database.

Other Concepts
There are several concepts that you should understand when working with a data

base. First, you need to remember that the database server is a completely separate

entity from PHP. While in these examples the database server and the web server

are the same machine, this is not always the case. So, if your database is on a different

machine from your PHP, you’ll need to change the host name in the DSN to point

to it.

To make things more interesting, database servers only listen for your connection

on a specific port number. Each database server has a default port number (MySQL’s

is 3306, PostgreSQL’s is 5432), but that may not be the port that the database admin

istrator chose to set, or the one that PHP knows to look at. When in doubt, include

your port number in the DSN.

You also need to be aware that a database server can have more than one database

on it, so yours may not be the only one. This is why the database name is commonly

included in the DSN—to help you get to your data, not some other person’s!

Finally, make sure you understand what you’ll receive from your PDO connection.

Your connection will return a PDO object—not a reference to the database, or any

data. It is through the PDO object that we interact with the database, bending it to

our will.

How do I fetch data from a table?
Here we are, connected to the database. Woo hoo! But what good is that if we can’t

get anything out of the database?

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 45

Solutions
PDO provides a couple of ways for us to interact with the database. Here, we’ll ex

plore both possible solutions.

Using the Query Method
First, let’s look at the faster, but not necessarily better, way—using the query

method:

pdoQuery.php (excerpt)

$country = 'USA';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'Select * from city where CountryCode =' .

 $dbh->quote($country);
 foreach ($dbh->query($sql) as $row)
{
 print $row['Name'] . "\t";
 print $row['CountryCode'] . "\t";
 print $row['Population'] . "\n";

 }
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}

An excerpt of this code’s output can be seen in Figure 2.2.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

46 The PHP Anthology

Figure 2.2. Output produced using the PDO query method

Using the Prepare and Execute Methods
Using the prepare and execute methods is generally considered the better way to

handle a query to the database. First, we call PDO->prepare with our SQL statement

as an argument. In return, we receive a PDOStatement object, on which we call the

execute method. Then, within a while loop, we repeatedly call the

PDOStatement->fetch method to retrieve the data we’ve selected from our database:

pdoPrepEx.php (excerpt)

$country = 'USA';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $sql = 'Select * from city where CountryCode =:country';
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 47

$stmt->execute();

 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

 print $row['Name'] . "\t";

 print $row['CountryCode'] . "\t";

 print $row['Population'] . "\n";

 }

}

catch (PDOException $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

An excerpt of the output of this code can be seen in Figure 2.3.

Figure 2.3. Output using the PDO prepare and execute methods

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

48 The PHP Anthology

Discussion
You’ll have noticed that both these solutions give you the same data, which is as it

should be. But there are very specific reasons for choosing one solution over the

other.

PDO->query is great when you’re only executing a query once. While it doesn’t

automatically escape any data you send it, it does have the very handy ability to

iterate over the result set of a successful SELECT statement. However, you should

take care when using this method. If you don’t fetch all the data in the result set,

your next call to PDO->query might fail.6 If you’re going to use the SQL statement

more than once, your best bet is to use prepare and execute—the preferred solution.

Using prepare and execute has a couple of advantages over query. First, it will

help to prevent SQL injection attacks by automatically escaping any argument you

give it (this approach is often considered the better practice for this reason alone).

Granted, if you build any other part of your query from user input, that will negate

this advantage, but you wouldn’t ever do that, would you? Second, prepared state

ments that are used multiple times (for example, to perform multiple inserts or

updates to a database) use fewer resources and will run faster than repeated calls

to the query method.

There are a couple of other ways we can use prepare and execute on a query, but

I feel that the example we discussed here will be the clearest. I used named para

meters in this solution, but be aware that PDO also supports question mark (?)

parameter markers. In the example we saw here, you could have chosen not to use

the paramBindmethod—instead, you could have given the parameters to the execute

command. See The PHP Manual if you have any questions about the alternative

syntaxes.

Using Fetch Choices
When you use prepare and execute, you have the choice of a number of formats

in which data can be returned. The example we saw used the PDO::FETCH_ASSOC

6 For further information, see The PHP Manual page at

http://www.php.net/manual/en/function.PDO-query.php.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d
http://www.php.net/manual/en/function.PDO-query.php

Using Databases with PDO 49

option with the fetch method, because it returns data in a format that will be very

familiar for PHP4 users: an associative array.7

If you’d rather use only object-oriented code in your application, you could instead

employ the fetchObject method, which, as the name implies, returns the result

set as an object. Here’s how the while loop will look when the fetchObject method

is used:

pdoPrepEx2.php (excerpt)

while ($row = $stmt->fetchObject())
{
 print $row->Name . "\t";
 print $row->CountryCode . "\t";
 print $row->Population . "\n";
}

How do I resolve errors in my SQL queries?
Errors are inevitable. They assail all of us and can, at times, be caused by circum

stances outside our control—database crashes, database upgrades, downtime for

maintenance, and so on. If something goes wrong when you’re trying to deal with

PHP and SQL together, it’s often difficult to find the cause. The trick is to get PHP

to tell you where the problem is, bearing in mind that you must be able to hide this

information from visitors when the site goes live.

We’re Only Looking for Errors—Not Fixing Them!

I won’t be explaining error handling in depth here—instead, I’ll show you how

to find errors. See Chapter 9 for more information on what to do when you’ve

found an error and want to fix it.

Solutions
PDO provides multiple solutions for catching errors. We’ll go over all three options

in the following examples, where we’ll introduce a typo into the world database

7 For a full listing of the ways in which you can have data returned, see the fetch page of the manual

at http://www.php.net/manual/en/function.pdostatement-fetch.php.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d
http://www.php.net/manual/en/function.pdostatement-fetch.php

50 The PHP Anthology

table name, so that it reads cities instead of city. If you run this code yourself,

you can also try commenting out the error-handling code to see what may be dis

played to site visitors.

Using Silent Mode
PDO::ERRMODE_SILENT is the default mode:

pdoError1.php (excerpt)

$country = 'USA';
$dbh = new PDO($dsn, $user, $password);
$sql = 'Select * from cities where CountryCode =:country';
$stmt = $dbh->prepare($sql);
$stmt->bindParam(':country', $country, PDO::PARAM_STR);
$stmt->execute();
$code = $stmt->errorCode();
if (empty($code))
{

⋮ proceed to fetch data
}
else
{
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo '<pre>';
 var_dump($stmt->errorInfo());
 echo '</pre>';
}

The default error mode sets the errorCode property of the PDOStatement object,

but does nothing else. As you can see in this example, you need to check the error

code manually to ascertain whether or not an error was found—otherwise your

script will happily continue on its merry way.

Using Warning Mode
PDO::ERRMODE_WARNING generates a PHP warning as well as setting the errorCode

property:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 51

pdoError2.php (excerpt)

$country = 'USA';
$dbh = new PDO($dsn, $user, $password);
$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING);
$sql = 'Select * from cities where CountryCode =:country';
$stmt = $dbh->prepare($sql);
$stmt->bindParam(':country', $country, PDO::PARAM_STR);
$stmt->execute();
$code = $stmt->errorCode();
if (empty($code))
{

⋮ proceed to fetch data
}
else
{
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo '<pre>';
 var_dump($stmt->errorInfo());
 echo '</pre>';
}

Again, the program will continue on its merry way unless you specifically check

for the error code. So, unless you have the Display Errors functionality turned on,

use a custom error handler, or check your error logs, you may not notice it.

Using Exception Mode
PDO::ERRMODE_EXCEPTION creates a PDOException as well as setting the errorCode

property:

pdoError3.php (excerpt)

$country = 'USA';
try
{
 $dbh = new PDO($dsn, $user, $password);
$dbh->setAttribute(PDO::ATTR_ERRMODE,

 PDO::ERRMODE_EXCEPTION);
 $sql = 'Select * from cities where CountryCode =:country';
 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);
 $stmt->execute();

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

52 The PHP Anthology

⋮ proceed to fetch data
}

catch (PDOException $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo '<pre>';

 echo 'Error: ' . $e->getMessage() . '
';

 echo 'Code: ' . $e->getCode() . '
';

 echo 'File: ' . $e->getFile() . '
';

 echo 'Line: ' . $e->getLine() . '
';

 echo 'Trace: ' . $e->getTraceAsString();

 echo '</pre>';

}

PDO::ERRMODE_EXCEPTION allows you to wrap your code in a try {…} catch {…}

block. An uncaught exception will halt the script and display a stack trace to let

you know there’s a problem.

The PDOException is an extension of the general PHP Exception class found in the

Standard PHP Library (or SPL).8

Discussion
Most people will choose to take advantage of PHP’s more powerful object oriented

model, and use the Exception mode to handle errors, since it follows the object

oriented style of error handling—catching and handling different types of excep

tions—and is easier to work with.

Regardless of the way you choose to handle your errors, it’s a good idea to return

the text of the SQL query itself. This allows you to see exactly which query is

problematic and will assist you in the error’s debugging.

8 You can learn more about the SPL and PHP’s base Exception class in the manual, at

http://www.php.net/spl/ and http://www.php.net/manual/en/language.exceptions.php.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d
http://www.php.net/spl/
http://www.php.net/manual/en/language.exceptions.php

Using Databases with PDO 53

How do I add data to, or modify
data in, my database?
Being able to fetch data from the database is a start, but how can you put it there in

the first place?

Solution
We add data to the database with the SQL INSERT command, and modify data that’s

already in the database with the SQL UPDATE command. Both commands can be

sent to the database using either the query method or the prepare and execute

methods. I’ll be using the prepare and execute methods in this solution.

INSERT Data into the Database
First up, let’s look at a simple INSERT, using the City table from the world database:

insert.php (excerpt)

$id = '4080';
$name = 'Guam';
$country = 'GU';
$district = 'Guam';
$population = 171018;
try
{
$dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$sql = 'INSERT INTO city

(ID, Name, CountryCode, District, Population)
VALUES (:id, :name, :country, :district, :pop)';

 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':id', $id);
 $stmt->bindParam(':name', $name);
 $stmt->bindParam(':country', $country);
 $stmt->bindParam(':district', $district);
 $stmt->bindParam(':pop', $population);
 $stmt->execute();
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

54 The PHP Anthology

echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

?>

UPDATE Data in the Database
And here’s a simple UPDATE, using the City table from the world database:

update.php (excerpt)

$id = '4080';
$name = 'Guam';
$country = 'GU';
$district = 'Guam';
$population = 171019; // data provided by the U.S. Census

// Bureau, International Data Base
// Mid year 2006

try
{
$dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$sql = 'UPDATE city SET Name = :name,

CountryCode = :country, District = :district,
Population = :pop WHERE ID = :id';

 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':id', $id);
 $stmt->bindParam(':name', $name);
 $stmt->bindParam(':country', $country);
 $stmt->bindParam(':district', $district);
 $stmt->bindParam(':pop', $population);
 $stmt->execute();
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}
?>

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 55

Discussion
Note that other than changing the SQL statement used in the prepare method, the

code in both examples above is exactly the same. We do like to keep things easy in

PHP!

In a practical application, some, if not all of the inputs to the query will be garnered

from user-generated content. Because we’re using the prepare and execute methods,

we don’t have to worry about an SQL injection attack on this query: all the variables

will be escaped automatically.

Be Cautious with UPDATE and DELETE

Be very careful when you use UPDATE or DELETE in your SQL. If you don’t have

a WHERE clause in your SQL statement, you will end up updating or deleting all

the rows in the table. Needless to say, either outcome could cause serious problems!

How do I protect my web site
from an SQL injection attack?
An SQL injection attack occurs when an attacker exploits a legitimate user input

mechanism on your site to send SQL code that your unsuspecting script passes on

to the database for execution. The golden rule for avoiding SQL injection attacks

is: escape all data from external sources before letting it near your database. That

rule doesn’t just apply to INSERT and UPDATE queries, but also to SELECT queries.

As we discussed earlier, using prepared statements for all your queries within a

script almost eliminates the problem of SQL injection attacks, but if you choose to

use the query method, you’ll have no such protection—you’ll have to manually es

cape any user input that goes into the query. Let’s look at an example:

sqlInject.php (excerpt)

//$city = 'New York';
$city ="' or Name LIKE '%" ;
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

56 The PHP Anthology

PDO::ERRMODE_EXCEPTION);

 $sql = "Select * from city where Name ='". $city ."'";

 foreach ($dbh->query($sql) as $row)

{

 print $row['Name'] . "\t";

 print $row['CountryCode'] . "\t";

 print $row['Population'] . "\n";

 }

}

catch (PDOException $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

In this example, we’ll pretend that the $city variable used in the SQL statement

comes from a form submitted by the user. A typical user would submit something

like New York. This would give us the following SQL statement:

Select * from city where Name ='New York'

This would cause no problems within the script. A savvy attacker, however, may

enter ' OR Name LIKE '%, which would give us the following SQL statement:

Select * from city where Name ='' OR Name LIKE '%'

This input opens the entire table to the attacker. “No big deal,” you say. “It’s only

a list of cities.” Yes, but what if instead of our simple city table, this was the author

ized users table? The attacker would have access to extremely sensitive data!

Solution
Luckily, this issue is fairly easy to avoid, though the solution will mean more work

for you. You can use PDO’s handy quote method to escape any data that you’re

passing to the SQL string. Simply change the SQL code to this:

 $sql = "Select * from city where Name ='".$dbh->quote($city)."'";

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 57

Remember that you’ll need to quote each individual piece of data you use in the

SQL query—there aren’t any shortcuts! That is, unless you consider prepare and

execute a shortcut.

Discussion
If you’re using the PDO->query method, always quote your input. Always!

If you choose to use the prepare and execute approach, you won’t have to quote

the values that you bind to the prepared SQL (for example, the values to be inser

ted)—that’s all done for you by the driver. However, there may be times when you

won’t be able to bind a variable to the prepared SQL. In such cases, you’ll need to

quote any values you use that cannot be bound (for example, a GROUP BY or ORDER

BY clause, or the table name) if you’re building a dynamic SQL statement.

Remember: a strong defense is a good offense.

How do I create flexible SQL statements?
SQL is a powerful language for manipulating data. With PHP, we can construct SQL

statements out of variables—an approach that can be useful for sorting a table by a

single column, or displaying a large result set across multiple pages.

Solution
Until the SQL is prepared and executed, it’s still just a string that you can manipulate

as you’d expect. This solution uses concatenation based on user input to select cities

from the specified country and display them in a specified order:

flexSQLConcat.php (excerpt)

$validCountries = array ('USA', 'CAN', 'GU', 'ISR');
if (isset($_GET['country']) &&

in_array($_GET['country'], $validCountries))
{

 $country = $_GET['country'];
}
else
{

 $country = 'USA';
}

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

58 The PHP Anthology

$order = (!isset($_GET['order'])) ? FALSE : $_GET['order'];

try

{

 $dbh = new PDO($dsn, $user, $password);

 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 $sql = 'SELECT * FROM city WHERE CountryCode = :country';

 switch ($order) {

 case 'district':

 // Add to the $sql string

 $sql .= " ORDER BY District";

 break;

 case 'pop':

 $sql .= " ORDER BY Population DESC";

 break;

 default:

 // Default sort by title

 $sql .= " ORDER BY Name";

 break;

 }

 $stmt = $dbh->prepare($sql);

 $stmt->bindParam(':country', $country);

 $stmt->execute();

 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

 print $row['Name'] . "\t";

 print $row['CountryCode'] . "\t";

 print $row['Population'] . "\n";

 }

}

catch (Exception $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

In this code, the user input is read either from a web form that has GET as its method,

or a URL with a query string. In the switch statement above, we’re generating dy

namic SQL using concatenation. The $order value is read, and an ORDER BY clause

is added to the SQL query.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 59

Discussion
An alternative solution involves using sprintf to build your dynamic SQL. This

approach is similar to binding variables to the prepared SQL:

flexSQLSprintf.php (excerpt)

 switch ($order) {
 case 'district':
 $orderby = " District";
 break;

 case 'pop':
 $orderby = " Population DESC";
 break;

 default:
 $orderby = " Name";
 break;

 }
 $format = 'SELECT * FROM city

WHERE CountryCode = :country ORDER BY %s';
 $sql = sprintf($format, $orderby);

It’s a matter of personal style, but either of these approaches can be extended to

columns, table names, WHERE clauses, LIMIT clauses, and anything else you wish to

include in your SQL query.

Remember that until the point at which the SQL is prepared and executed, it’s just

a string that you can manipulate as much as you require.

How do I find out how
many rows I’ve touched?
Often, it’s useful to be able to count the number of rows returned or affected by a

query before you do anything with them. This capability is particularly handy when

you’re splitting results across pages, or producing statistical information.

Solutions
The two solutions that follow will enable you to count the number of rows returned,

and the number of rows affected, by your operations within the database.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

60 The PHP Anthology

Counting the Rows Returned
PDO doesn’t have a magic method that counts the number of rows returned from a

SELECT call. You can use the PDOStatement->rowCountmethod to return the number

of rows returned by a SELECT statement with some PDO database drivers. However,

as the behavior of this function isn’t guaranteed to be consistent with every database

driver, I won’t cover it here. Feel free to try it yourself with your database driver,

but keep in mind that if you need to write portable code, this approach is not reliable.

There is, however, a solution that works around this lack of a useful method—it

uses the SQL aggregate function COUNT.

Here’s the code that will count the number of rows returned:

count.php (excerpt)

$country = 'USA';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'SELECT COUNT(*) FROM city

WHERE CountryCode =:country';
 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);
 $result = $stmt->execute();
 echo 'There are ', $stmt->fetchColumn(), ' rows returned.';
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}

Discussion

COUNT returns the number of rows from a query, or a part of a query, and is commonly

used with the DISTINCT keyword. SQL’s aggregate function COUNT is widely suppor

ted by the various database systems. For more information on how your database

handles COUNT, see your database’s documentation.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 61

Counting the Rows Affected
We can use the PDOStatement->rowCount method to find out how many rows were

affected by an UPDATE, INSERT or DELETE query. The use of rowCount is not common

in typical PHP applications, but it can be a good way to inform users that “Number

of records deleted from the Customers table: n.”

Here’s the code you’ll need:

affect.php (excerpt)

$country = 'AFG';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'DELETE FROM city WHERE CountryCode = :country';
 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);
 $result = $stmt->execute();
 echo 'Number of records deleted from the city table: ';
 echo $stmt->rowCount();
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}

After you call PDOStatement->execute, you can call the PDOStatement->rowCount

method to return the number of rows affected.

Make Sure you Add a WHERE Clause

When you’re using the SQL commands UPDATE and DELETE, always make sure

you add a WHERE clause. Without it, you will either be updating an entire column

in the database, or deleting all the data in the table, neither of which is what you

likely meant to do!

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

62 The PHP Anthology

How do I find out a new INSERT’s row
number in an autoincrementing field?
When you’re dealing with autoincrementing columns in database tables, you’ll often

need to find out the ID of a row you’ve just inserted, so that you can update other

tables with this information. After all, that’s how relationships between tables are

maintained.

Solution
To accomplish this task, PDO provides the lastInsertId method, which returns

the ID generated by the last INSERT operation if this capability is supported by the

driver being used.9 Here’s how it works:

lastId.php (excerpt)

$name = 'Dededo';
$country = 'GU';
$district = 'Guam';
$population = 42980; // according to the 2000 US census
try
{
$dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$sql = 'INSERT INTO city

(Name, CountryCode, District, Population)
VALUES (:name, :country, :district, :pop)';

 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':name', $name);
 $stmt->bindParam(':country', $country);
 $stmt->bindParam(':district', $district);
 $stmt->bindParam(':pop', $population);
 $stmt->execute();
 echo 'ID of last insert: ', $dbh->lastInsertId();
}
catch (PDOException $e)
{

9 lastInsertId may not behave consistently when it’s used with different database drivers—some

database drivers do not support autoincrementing fields. Read the manual page at

http://www.php.net/manual/en/function.PDO-lastInsertId.php for more information.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d
http://www.php.net/manual/en/function.PDO-lastInsertId.php

Using Databases with PDO 63

echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

Discussion
When you’re using the lastInsertId method, be sure to use the PDO object ($dbh

above), not the PDOStatement object (that’s the object you create when you use

prepare—$stmt above). If you don’t, an error will result.

How do I search my table?
Some people are just impatient; rather than exploring your site with the friendly

navigation system you’ve provided, they demand relevant information now! And

obliging PHP developers like you and I happily implement search functionality to

provide visitors with a shortcut to the information they want.

In the bad old days when all content was stored in the form of HTML files, develop

ing usable search functionality could be quite a problem, but now that we use

databases to store content, performing searches becomes much easier.

Solution
The most basic form of search occurs against a single column, with the database

LIKE operator:

like.php (excerpt)

$country = 'A';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'SELECT * FROM city

WHERE CountryCode LIKE :country';
 $stmt = $dbh->prepare($sql);
 $country = $country.'%';
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

64 The PHP Anthology

$stmt->execute();

 while ($row = $stmt->fetchObject()) {

 print $row->Name . "\t";

 print $row->CountryCode . "\t";

 print $row->Population . "\n";

 }

}

catch (PDOException $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

Discussion
The LIKE search is supported by almost all database systems,10 and is usually used

in conjunction with wildcard characters. The % character I used in the example

above matches any number of characters—even zero characters. The wildcard

character used in the example allows my query to find any city in a country that

starts with the letter A.

The other wildcard character that’s typically available is _, which will match any

single character. So if, in the example above, I wanted to find only cities in countries

that started with A and ended with G, I’d need to change just one line of code:

/* $country = $country.'%'; <- remove this */

$country = $country.'_G'; // <- add this

If you need a more complicated search method, check your database documentation

to see what’s available. For example, MySQL has FULLTEXT search capabilities, as

explained on the MySQL manual site.11

10 You should verify the availability of the LIKE keyword, and the wildcard characters you want to use

with it, in your database system documentation.
11 http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html

The PHP Anthology (www.sitepoint.com)

http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html
http://www.sitepoint.com/launch/c0688d
http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html

Using Databases with PDO 65

How do I work with transactions?
Let’s imagine we’re trying to complete a transaction at our local bank—we need to

move some money from our savings account to our checking account (to pay for

that vacation, of course). Now, if a problem arises in the middle of the transaction

(after you withdraw the money from the savings account, but before you deposit it

into the checking account), the money will disappear, and you can forget that vaca

tion. Or does it?

If you need to run a group of SQL queries as one operation in order to maintain the

integrity of your data, then you need transactions. Almost all databases provide

transaction support in one form or another, and knowing how to use transactions

with PDO can help you secure that well-deserved vacation.

Solution
We start the hypothetical transaction with the PDO->beginTransaction method,

and if all goes well, end it with PDO->commit. If a problem occurs, we use the

PDO->rollback method to undo everything that’s taken place in the transaction:

transaction.php (excerpt)

try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$dbh->beginTransaction();

 $sql = 'INSERT INTO transactions
(acctNo, type, value, adjustment)
 VALUES (:acctNo, :type, :value, :adjust)';

 $stmt = $dbh->prepare($sql);
 $stmt->execute(array(':acctNo'=>$acctFrom, ':type'=>$withdrawal,

 ':value'=>$amount, ':adjust'=>'-'));
 $sql = 'INSERT INTO transactions

 (acctNo, type, value, adjustment)
 VALUES (:acctNo, :type, :value, :adjust)';

 $stmt = $dbh->prepare($sql);
 $stmt->execute(array(':acctNo'=>$acctTo,

 ':type'=>$deposit,
 ':value'=>$amount,
 ':adjust'=>'+'));

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

66 The PHP Anthology

$dbh->commit();

}

catch (Exception $e)

{

$dbh->rollBack();

⋮ further error handling here

}

Discussion
Before we get into the deeper nuances of PDO’s transaction handling capabilities,

let’s look at the official definition of database transactions from the PDO manual

page12:

“If you’ve never encountered transactions before, they offer 4 major features:

Atomicity, Consistency, Isolation and Durability (ACID). 13 In layman’s terms, any

work carried out in a transaction, even if it is carried out in stages, is guaranteed to

be applied to the database safely, and without interference from other connections,

when it is committed. Transactional work can also be automatically undone at your

request (provided you haven’t already committed it), which makes error handling

in your scripts easier.”

“Transactions are typically implemented by “saving-up” your batch of changes to

be applied all at once; this has the nice side effect of drastically improving the effi

ciency of those updates. In other words, transactions can make your scripts faster

and potentially more robust (you still need to use them correctly to reap that bene

fit).”

Unfortunately, not all database systems support transactions. So, by default, PDO

will run in auto-commit mode, where each query is treated as its own transaction.

If the database does not support transactions, the query is issued without one.

If your database supports transactions, rather than using the auto-commit feature,

you can start and stop transactions manually. In the example above, the

PDO->beginTransaction and PDO->commit methods are called in the try block. The

12 http://www.php.net/pdo
13 Emphasis added by the author.

The PHP Anthology (www.sitepoint.com)

http://www.php.net/pdo
http://www.php.net/pdo
http://www.sitepoint.com/launch/c0688d
http://www.php.net/pdo

Using Databases with PDO 67

PDO->rollback is used in the catch block to roll the database back in case of a

problem.

How do I use stored procedures with PDO?
Many databases support stored procedures—scripts that are run on your database

typically in a database-specific SQL language.14 Stored procedures allow the manip

ulation of the data close to the location where the data is held, reducing bandwidth.

They maintain the separation of the data from the script logic, and allow multiple

systems in potentially different languages to access the data in a uniform manner

(saving you valuable coding and debugging time). Finally, stored procedures increase

query speeds using predetermined execution plans, and can prevent any direct in

teraction with the data, thereby protecting it.

Solution
Using PDO to work with stored procedures is fairly easy. In the example below,

you’ll see the simple stored procedure we’ll be interacting with in our code.15 It

does nothing more than generate the quote, “Out, damned spot!” from Shakespeare’s

Macbeth:

getQuote.sql (excerpt)

DROP PROCEDURE IF EXISTS getQuote;

DELIMITER //
CREATE PROCEDURE getQuote()
BEGIN
DECLARE outStr VARCHAR(45);
SET outStr = "Out, damned spot!";
SELECT outStr;
END//

DELIMITER ;

Here’s the code that uses the stored procedure:

14 Such languages include PL/SQL (Oracle), T-SQL (SQL Server), PL/pgSQL (PostgreSQL), and SQL::2003

(IBM DB2 and MySQL).

15 This procedure is written in SQL::2003 syntax for MySQL.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

68 The PHP Anthology

storedProc.php (excerpt)

try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'CALL getQuote()';
 $stmt = $dbh->prepare($sql);
$stmt->execute();
 $return_string = $stmt->fetch();
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}

echo 'Called stored procedure. It returned: ', $return_string[0];

The example script will produce this output:

Called stored procedure. It returned: Out, Damned Spot!

Discussion
Each database’s stored procedure language is different, so be sure to check your

system’s documentation to identify the specific syntax you’ll need to create a stored

procedure. To learn more about MySQL’s stored procedures, check out the relevant

manual pages.16

In the example above, which was made for MySQL, you’ll notice that the stored

procedure includes the DECLARE, SET, and SELECT statements. Generally speaking,

these are needed in any MySQL stored procedure to retrieve data. Nothing special

is needed to retrieve the data from the stored procedure—we just use the

PDOStatement->fetch method to grab the value returned from the final SELECT

16 http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html

The PHP Anthology (www.sitepoint.com)

http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html
http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html
http://www.sitepoint.com/launch/c0688d
http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html

Using Databases with PDO 69

statement in the stored procedure. (MySQL normally uses an OUT parameter for the

stored procedure, but this is not necessary with PDO.)

How do I back up my database?
The bigger a database becomes, the more nerve-wracking it can be not to have a

backup of the data it contains. It’s truly the stuff of nightmares: what happens if

your server crashes and everything is lost?

It’s common for database software to have some kind of built-in backup utility for

just this reason. In this solution, we’ll work through an example that uses the

mysqldump utility for the MySQL database system.

Solution
You can export the contents of a database from the command line using mysqldump:

mysqldump -uuser -psecret world > world.sql

This command will log in to MySQL as user “user” (-uuser) with the password

“secret” (-psecret) and output the contents of the world database to a file called

world.sql. The contents of world.sql will be a series of queries that can be run against

MySQL. Using the mysql utility, we can perform the reverse operation from the

command line:

mysql -uuser -psecret world < world.sql

You can use PHP’s system function to execute this command from within a PHP

script (though you’ll need to be logged in and able to execute PHP scripts from the

command line). The following example wraps the mysqldump command line utility

in a handy PHP class that you can use to keep regular backups of your site:

MySQLDump.class.php (excerpt)

<?php
class MySQLDump
{
 private $cmd;
 public function __construct($dbUser, $dbPass, $dbName, $dest,

 $zip = 'gz')

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

70 The PHP Anthology

{

 $zip_util = array('gz'=>'gzip','bz2'=>'bzip2');

 if (array_key_exists($zip, $zip_util))

 {

 $fname = $dbName . '.' . date("w") . '.sql.' . $zip;

$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . '| ' . $zip_util[$zip] . ' >' .

 $dest . '/' . $fname;

 }

 else

 {

 $fname = $dbName . '.' . date("w") . '.sql';

$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . ' >' . $dest . '/' . $fname;

 }

 }

 public function backup()

 {

 system($this->cmd, $error);

 if ($error)

 {

 trigger_error('Backup failed: ' . $error);

 }

 }

}

?>

MySQLDump Assumptions

The MySQLDump class makes some assumptions about your operating system

configuration. It assumes that the mysqldump utility is available in the path of

the user that executes this script. If the gzip or bzip2 utilities are used, they’re

also expected to be present in the user’s path. If you have a choice, use bzip2, as

it provides better compression than gzip, and helps to save disk space.

The following code shows how this class can be used:

backup.php (excerpt)

<?php
require_once 'MySQLDump.class.php';
$dbUser = 'user';

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 71

$dbPass = 'secret';

$dbName = 'world';

$dest = '/home/user/backups';

$zip = 'bz2';

$mysqlDump = new MySQLDump($dbUser, $dbPass, $dbName, $dest, $zip);

$mysqlDump->backup();

?>

This code will create a backup of the world database in the /home/user/backups

directory. If you test this example, make sure to change the variables to suit your

setup.

Discussion
The $dest variable specifies the path to the directory in which the backup file

should be placed. The filename that’s created will be in this format:

databaseName.dayOfWeek.sql.zipExtension

Here’s an example:

world.1.sql.bz2

A number from 0 to 6 that represents the day of the week (0 being Sunday and 6

being Saturday) is inserted into the dayOfWeek element. This filename convention

can provide a weekly rolling backup, with the files for the current week overwriting

those from the previous week. Such an approach should provide adequate backups;

it gives you a week to discover any serious problems, and doesn’t require excessive

disk space for file storage.

The use of a ZIP utility is optional. The default value of the $zip parameter is gz,

which indicates the gzip utility should be used. The other option is bz2, which

indicates the bzip2 utility should be used. If neither of these values is used, no

compression will be made; however, for large databases it’s obviously a good idea

to use a compression tool to minimize the amount of disk space required.

This class is intended for use with the crontab utility, which is a Unix feature that

allows you to execute scripts on a regular (for example, daily) basis.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

72 The PHP Anthology

Catering to Platform Differences
You may have noticed that the above MySQLDump class will only work on a *nix

server. What if your database server uses a Windows box? I offer the following

solution to circumvent this problem. First we define an abstract MySQLDump class,

then we extend it to create a class for each platform, and finally we create a factory

method to instantiate the correct MySQLDump object needed. Here’s our abstract

MySQLDump class:

AbstractMySQLDump.class.php (excerpt)

require_once 'MySQLDump_ms.class.php';
require_once 'MySQLDump_nix.class.php';

abstract class MySQLDump
{
 public static function factory($dbUser, $dbPass, $dbName, $dest,

 $zip)
 {
 if (strtoupper(substr(PHP_OS, 0, 3)) === 'WIN')
 {
 return new MySQLDump_ms($dbUser, $dbPass, $dbName, $dest,

 $zip);
 }
 else
 {
 return new MySQLDump_nix($dbUser, $dbPass, $dbName, $dest,

 $zip);
 }

 }

 abstract public function __construct($dbUser, $dbPass, $dbName,
 $dest, $zip = 'gz');

 public function backup()
 {
 system($this->cmd, $error);
 if ($error)
 {
 throw new MySQLDumpException(

 'Backup failed: Command = ' . $this->cmd .
 ' Error = ' . $error);

 }
 }

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 73

}

class MySQLDumpException extends Exception {}

The backup method represents our backup API. Child classes need to implement a

custom constructor that sets the cmd property. Overriding the backup method is

optional. The static method factory will instantiate a MySQLDump object instance

based on the PHP_OS constant—representing the host platform. We’ve also added a

custom exception class, MySQLDumpException, for error handling.

The *nix version of our backup class will contain an implementation similar to the

solution class above, but we’ll need to change the class definition so that it extends

the abstract MySQLDump class:

MySQLDump_nix.class.php (excerpt)

require_once 'AbstractMySQLDump.class.php';
class MySQLDump_nix extends MySQLDump
{
 protected $cmd;

 public function __construct($dbUser, $dbPass, $dbName, $dest,
 $zip = 'gz')

 {
 $zip_util = array('gz'=>'gzip','bz2'=>'bzip2');
 if (array_key_exists($zip, $zip_util))
 {
 $fname = $dbName . '.' . date("w") . '.sql.' . $zip;
$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . '| ' . $zip_util[$zip] . ' >' .
 $dest . '/' . $fname;

 }
 else
 {
 $fname = $dbName . '.' . date("w") . '.sql';
$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . ' >' . $dest . '/' . $fname;
 }

 }
}

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

74 The PHP Anthology

We can then make an implementation for the Windows platform:

MySQLDump_ms.class.php (excerpt)

require_once 'AbstractMySQLDump.class.php';
class MySQLDump_ms extends MySQLDump
{
 protected $cmd;

 public function __construct($dbUser, $dbPass, $dbName, $dest,
 $zip = 'none')

 {
 $fname = $dbName . '.' . date("w") . '.sql';
$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . ' >' . $dest . '\\' . $fname;
 }
}

The Windows version above includes changes to suit the Windows path and ignores

the $zip argument due to the lack of gzip and bzip2 on that platform. This class

also assumes that the path to the mysqldump.exe executable file is in the system

PATH environment variable.

Here’s an example of a backup script that makes use of the above classes on a

Windows box:

backup2.php (excerpt)

<?php
require_once 'AbstractMySQLDump.class.php';
try
{
 $dbUser = 'user';
 $dbPass = 'secret';
 $dbName = 'world';
 $dest = 'c:\backups';
 $zip = 'none';
 $mysqlDump = MySQLDump::factory($dbUser, $dbPass, $dbName,

 $dest, $zip);
 $mysqlDump->backup();
}
catch (Exception $e)
{

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Using Databases with PDO 75

echo $e->getMessage();

}

?>

Since we’ve used an abstract class to define our API, the use of the class remains

the same no matter what platform it’s used on, as long as it’s one of our supported

platforms.

Summary
There you have it—our whirlwind tour of PDO and databases is done! By now, you

should have a grasp of the basic workings between PHP’s PDO extension and data

bases. We also covered the topics of searching, stored procedures, protecting your

script from SQL injection attacks, writing flexible code, and making database

backups.

Being able to work comfortably with a database is part of a strong foundation for

PHP, and learning to make the most of PHP’s PDO extension only makes it easier.

Use the examples and solutions presented here to help build on your existing

database skills.

I also hope you’ll take the time to learn more about SQL and your database. Learning

the nuances and capabilities of your chosen database platform can only help make

your code more efficient and elegant over time.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Chapter10
Access Control
One of the realities of building your site with PHP, as opposed to plain old HTML,

is that you build dynamic web pages rather than static web pages. Making the choice

to develop your site with PHP will allow you to achieve results that aren’t possible

with plain HTML. But, as the saying goes, with great power comes great responsib

ility. How can you ensure that only you, or those to whom you give permission, are

able to view and interact with your web site, while it remains safe from the Internet’s

evil hordes as they run riot, spy on private information, or delete data?

In this chapter, we’ll look at the mechanisms you can employ with PHP to build

authentication systems and control access to your site. I can’t stress enough the

importance of a little healthy paranoia in building web-based applications. The

SitePoint Forums frequently receive visits from unhappy web site developers who

have had their fingers burned when it came to the security of their sites.

Data Transmission Over the Web is Insecure

Before we go any further into discussing any specific site security topics, you

must be aware that any system you build that involves the transfer of data from

a web page over the Internet will send that information in clear text by default

270 The PHP Anthology

(unless you’re using HTTPS, which encrypts the data). This potentially enables

someone to “listen in” on the network between the client’s web browser and the

web server; with the help of a tool known as a packet sniffer, they’ll be able to

read the username and password sent via your form, for example. The chance of

this risk eventuating is fairly small, as typically only trusted organizations like

ISPs have the access required to intercept packets; however, it is a risk, and it’s

one you should take seriously.

About the Examples in this Chapter

Before we dive in, I need to let you know about the example solutions discussed

in this chapter.

The example classes in some of these solutions require the use of a configuration

file: access_control.ini. This file is used to store various database table names and

column names used in the examples. Since not everyone names their database

tables in the same way, configuration values like these are often intended to be

customizable. The access_control.ini file is read into an array using the PHP

parse_ini_file function (you can read more about this technique in “How do

I store configuration information in a file?” in Chapter 6). The configuration file

looks like this:

access_control.ini (excerpt)

; Access Control Settings

;web form variables e.g. $_POST['login']

[login_vars]

login=login

password=password

⋮ more settings follow…

When an example uses configuration information from this file, that will be indic

ated within the section.

Similarly, the solutions below assume a certain database configuration. The SQL

details relevant to each solution are indicated in the text where appropriate.

If you’ve downloaded the code archive for this book from the SitePoint web site,

you’ll find a file called access_control_dump.sql in the folder for this chapter. You

can use this file to create the database and insert some sample data. Using this

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 271

file is identical to using the world database in Chapter 2. The instructions found

at http://dev.mysql.com/doc/world-setup/en/world-setup.html can be used to

create the access_control database too, like so:

command prompt> mysql -u root -p
mysql> CREATE DATABASE access_control;
mysql> USE access_control;
mysql> SOURCE access_control_dump.sql;

Of course, you’ll have to add the missing path and password information as ap

propriate for your system.

Finally, all these solutions use the PDO class to make the connection to the data

base. For more information about using the PDO class, see Chapter 2. All the

solutions involving web page forms use the PEAR HTML_QuickForm package.

You can read more about using this package in “How do I build HTML forms with

PHP?” in Chapter 5.

How do I use HTTP authentication?

Hypertext Transfer Protocol, or HTTP—the transfer protocol used to send web

pages over the Internet to your web browser—defines its own authentication

mechanisms. These mechanisms, basic and digest authentication, are explained in

RFC 2617.1 If you run PHP on an Apache server, you can take advantage of these

mechanisms—digest is available from PHP version 5.1.0—using PHP’s header

function and a couple of predefined variables. A general discussion of these features

is provided in the Features section of The PHP Manual.2

HTTP Authentication and Apache

If you wish to use HTTP authentication on your web site, you can set it up using

only the Apache configuration settings—PHP is not required. For more information

on how to do this, see the Apache documentation for your server version.3

1 http://www.ietf.org/rfc/rfc2617
2 http://www.php.net/manual/en/features.http-auth.php
3 For example, the documentation for version 2.2 can be found at

http://httpd.apache.org/docs/2.2/howto/auth.html.

Order the print version of this book to get all 500+ pages!

http://www.ietf.org/rfc/rfc2617
http://www.php.net/manual/en/features.http-auth.php
http://www.sitepoint.com/launch/c0688d
http://www.ietf.org/rfc/rfc2617
http://www.php.net/manual/en/features.http-auth.php
http://httpd.apache.org/docs/2.2/howto/auth.html

272 The PHP Anthology

Solution
Let’s step through a simple example page that uses the $_SERVER['PHP_AUTH_USER']

and $_SERVER['PHP_AUTH_PW'] automatic global variables and the WWW-Authenticate

HTTP header to protect itself—if the current user is not in a list of allowed users,

access is denied.

First, we need a list of valid usernames and passwords. For the purpose of this

simple demonstration, we’ll just use an array, but this would not be advisable for

a real-world situation where you’d likely use a database (which we’ll see in “How

do I build a registration system?”). Here’s the $users array:

httpAuth.php (excerpt)

<?php
$users = array(
 'jackbenimble' => 'sekret',
 'littlepig' => 'chinny'
);

Next, we test for the presence of the automatic global variable

$_SERVER['PHP_AUTH_USER']. If the variable is not set, a username hasn’t been

submitted and we need to make an appropriate response—a HTTP/1.1 401 Unau

thorized response code, as well as a second header to indicate that we require basic

authentication using the WWW-Authenticate header:

httpAuth.php (excerpt)

if (!isset($_SERVER['PHP_AUTH_USER']))
{
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="PHP Secured"');
 exit('This page requires authentication');
}

If a username has been submitted, we need to check that the username exists in our

list of valid usernames, then ensure that the submitted password matches the one

associated with the username in our list:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 273

httpAuth.php (excerpt)

if (!isset($users[$_SERVER['PHP_AUTH_USER']]))
{
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="PHP Secured"');
 exit('Unauthorized!');
}

if ($users[$_SERVER['PHP_AUTH_USER']] != $_SERVER['PHP_AUTH_PW'])
{
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="PHP Secured"');
 exit('Unauthorized!');
}

Finally, if all our checks pass muster, we can proceed to display the web page. In

this example, we simply display the credentials we’ve received from the authentic

ation form. Of course, this output is for demonstration purposes only—you’d never

do this in a real situation:

httpAuth.php (excerpt)

echo 'You\'re in ! Your credentials were:
';
echo 'Username: ' . $_SERVER['PHP_AUTH_USER'] . '
';
echo 'Password: ' . $_SERVER['PHP_AUTH_PW'];
?>

Discussion
To understand how HTTP authentication works, you must first understand what

actually happens when your browser sends a web page request to a web server.

HTTP is the protocol for communication between a browser and a web server. When

your browser sends a request to a web server, it uses an HTTP request to tell the

server which page it wants. The server then replies with an HTTP response that

describes the type and characteristics of the document being sent, then delivers the

document itself.

For example, a client might send the following request to a server:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

274 The PHP Anthology

GET /subcat/98 HTTP/1.1

Host: www.sitepoint.com

Here’s what it might receive from the server in return:

HTTP/1.1 200 OK Date: Sat, 24 Mar 2007 08:12:44 GMT

Server: Apache/2.0.46 (Red Hat)

X-Powered-By: PHP/4.3.11

Transfer-Encoding: chunked

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <title>PHP & MySQL Tutorials</title>

⋮ and so on…

If you’d like to see this process in action, the next example will give you the chance,

as we open a connection to www.sitepoint.com and request /subcat/98. 4 The ex

ample script will read the response from the server and output the complete HTTP

response for you:

seeHeaders.php

<?php
// Connect to sitepoint.com
$fp = fsockopen('www.sitepoint.com', '80');

// Send the request
fputs($fp,

 "GET /subcat/98 HTTP/1.1\r\nHost: www.sitepoint.com\r\n\r\n");

// Fetch the response
$response = '';
while (!feof($fp))
{
 $response .= fgets($fp, 128);
}

4 We use sockets in the next example to illustrate the passing of the HTTP headers. You can use any of

a multitude of alternative methods to get the contents of the page itself, from file_get_contents

to fopen, fread, and fclose. For more information, see Chapter 6.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Access Control 275

fclose($fp);

// Convert HTML to entities

$response = htmlspecialchars($response);

// Display the response

echo nl2br($response);

?>

Authentication headers are additional headers sent by a server to instruct the browser

that it must send a valid username and password in order to view the page.

In response to a normal request for a page secured with basic HTTP authentication,

a server might respond with headers like these:

HTTP/1.1 401 Authorization Required

Date: Tue, 25 Feb 2003 15:41:54 GMT

Server: Apache/1.3.27 (Unix) PHP/4.3.1

X-Powered-By: PHP/4.3.1

WWW-Authenticate: Basic realm="PHP Secured"

Connection: close

Content-Type: text/html

No further information is sent, but notice the status code HTTP/1.1 401 Authorization

Required and the WWW-Authenticate header. Together, these HTTP request elements

indicate that the page is protected by HTTP authentication, and isn’t available to

an unauthorized user. A visitor’s browser can convey this information in a variety

of ways, but usually the user will see a small popup like that shown in Figure 10.1.

Figure 10.1. The Authentication Required dialog

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

276 The PHP Anthology

The dialog prompts site visitors to enter their usernames and passwords. After vis

itors using Internet Explorer have entered these login details incorrectly three times,

the browser displays the “Unauthorized” message instead of displaying the prompt

again. In other browsers, such as Opera, users may be able to continue to try to log

in indefinitely.

Notice that the realm value specified in the WWW-Authenticate header is displayed

in the dialog. A realm is a security space or zone within which a particular set of

login details are valid. Upon successful authentication, the browser will remember

the correct username and password combination, and automatically resend any

future request to that realm. When the user navigates to another realm, however,

the browser displays a fresh prompt once again.

In any case, the user must provide a username and password to access the page.

The browser sends those credentials with a second page request like this:

GET /admin/ HTTP/1.1

Host: www.sitepoint.com

Authorization: Basic jTSAbT766yN0hGjUi

The Authorization header contains the username and password encoded with

base64 encoding which, it’s worth noting, isn’t secure—it’s unreadable for humans,

but it’s a trivial task to convert base64-encoded values back to the original text.

The server will check to ensure that the credentials are valid. If they’re not, the

server will send the HTTP/1.1 401 Authorization Required response again, as shown

previously. If the credentials are valid, the server will send the requested page as

normal.

A package you should consider if you expect to use the HTTP Authentication a lot

is the HTTP_Auth package available from PEAR.5 HTTP_Auth provides an easy-to

use API so that you don’t have to worry about handling the header calls yourself.

Sending Headers

In PHP, the moment your script outputs anything that’s meant for display, the

web server finishes sending the headers and begins to send the content itself. You

5 You can view the package’s information at http://pear.php.net/Auth_HTTP/.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d
http://pear.php.net/Auth_HTTP/

Access Control 277

cannot send further HTTP headers once the output of the body of the HTTP mes

sage—the web page itself—has commenced. If you do use the header or

session_start functions after the rendering of the body has begun, you’ll see

an error message like this:

Warning: Cannot add header information - headers already
sent by (output started at…

Remember, any text or whitespace outside the <?php … ?> tags causes output

to be sent to the browser. If you have whitespace before a <?php tag or after a ?>

tag, you won’t be able to send headers to the browser beyond that point.

How do I use sessions?

Sessions are a mechanism that allows PHP to preserve state between executions.

In simple terms, sessions allow you to store variables from one page—the state of

that page—and use them on another. For example, if a visitor submits his first name,

Bob, via a form on your site, sessions will allow your site to remember his name,

and allow you to place personal messages such as “Where would you like to go

today, Bob?” on all the other pages of your site for the duration of his visit. Don’t

be surprised if Bob leaves rather quickly, though!

The basic mechanism of sessions works like this: first, PHP generates a unique, 32

character string to identify the session. PHP then passes the value to the browser;

simultaneously, it creates a file on the server and includes the session ID in the fi

lename. There are two methods by which PHP can keep track of the session ID: it

can add the ID to the query string of all relative links on the page, or send the ID as

a cookie. Within the file that’s stored on the server, PHP saves the names and values

of the variables it’s been told to store for the session.

When the browser makes a request for another page, it tells PHP which session it

was assigned via the URL query string, or by returning the cookie. PHP then looks

up the file it created when the session was started, and so has access to the data

stored within the session.

Once the session has been established, it’ll continue until it’s specifically destroyed

by PHP (in response to a user clicking Log out, for example), or the session has been

inactive for longer than a given period of time (as specified in your php.ini file under

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

278 The PHP Anthology

session.gc_maxlifetime). At this point it becomes flagged for garbage collection

and will be deleted the next time PHP checks for outdated sessions.

Solution
Here’s a very simple demonstration of storing and retrieving a session variable:

simpleSession.php

<?php
session_start();
// If session variable doesn't exist, register it
if (!isset($_SESSION['test']))
{
 $_SESSION['test'] = 'Hello World!';
 echo '$_SESSION[\'test\'] is registered.
' .

 'Please refresh page';
}
else
{
 // It's registered so display it
 echo '$_SESSION[\'test\'] = ' . $_SESSION['test'];
}
?>

The script registers the session variable test the first time the page is displayed.

The next time (and all times thereafter, until the session times out through inactivity),

the script will display the value of the test session variable.

Discussion
In general, sessions are easy to use and powerful—they’re an essential tool for

building online applications. The first order of business in a script that uses sessions

is to call session_start to load any existing session variables.

You should always access session variables via the predefined global variable

$_SESSION, not the functions session_register and session_unregister.

session_register and session_unregister fail to work correctly when PHP’s

register_globals setting has been disabled, which should always be the case.

In the following HTTP response headers, a server passes a session cookie to a browser

as a result of the session_start function in a PHP script:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 279

HTTP/1.1 200 OK

Date: Wed, 26 Feb 2003 02:23:08 GMT

Server: Apache/1.3.27 (Unix) PHP/4.3.1

X-Powered-By: PHP/4.3.1

Set-Cookie: PHPSESSID=ce558537fb4aefe349bb8d48c5dcc6d3; path=/

Connection: close

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

⋮ and so on…

Storing Sessions Elsewhere

Notice that I’ve said sessions are stored, by default, on the server as files. It’s also

possible to store sessions elsewhere, such as in a database or even shared memory.

We’ll discuss creating a custom session handler for saving the session variables

to a database in “How do I store sessions in a database?”. Storing sessions in

database can be useful for displaying “who’s online” information, and for load-

balancing multiple web servers using a single-session repository—a mechanism

that allows visitors to (unknowingly) swap servers while their session is main

tained.

Sessions Aren’t Perfect

While sessions are a wonderful tool, they can easily cause headaches if you don’t

understand their limitations. Take care when you handle data that’s relevant to

the session state. For example, when users open multiple windows for a site, a

script executed in one window may overwrite data saved from another, rolling

back a user to an earlier state in the site. Also be aware that resource handles and

references are not saved with an object in the session—you need to release and

recreate them in the __sleep and __wakeup methods of your classes.6 Also, try

to keep the amount of data in the session variables to a minimum, as pulling large

chunks of data that aren’t used for every page may slow the pages down.

6 __sleep and __wakeup are examples of magic methods, and are explained at

http://www.php.net/manual/en/language.oop5.magic.php.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
http://www.php.net/manual/en/language.oop5.magic.php

280 The PHP Anthology

Session Security
Sessions are very useful, but there are some important security considerations you

should take into account when you use sessions in your applications.

By default, all a browser has to do to gain control of a session is pass a valid session

ID to PHP. In an ideal world, you could store the IP address that registered the ses

sion, and double-check it against every new request that used the associated session

ID. Unfortunately, some ISPs, such as AOL, assign their users a new IP on almost

every page request, so this type of security mechanism would soon start to throw

valid users out of the system. As such, it’s important to design your application in

a manner that assumes that one of your users will eventually have his or her session

“hijacked.”

The user’s account is exposed until the session expires, so your aim should be to

prevent the hijackers from causing serious damage while the session is active. This

means, for example, that when a logged-in user goes to change his or her account

password, the old password must be provided—obviously, hijackers won’t know

that. Also, be careful with the way you handle the users’ personal information (such

as credit card details). If you give users the opportunity to make significant changes

to their account details, such as change a shipping addresses, be sure to send a

summary notification of that change to them via email to alert users whose sessions

may have been hijacked.

Keep the session ID completely hidden, using SSL (secure sockets layer) to encrypt

the conversation. What’s more, you should only use the cookie method of passing

the session ID. If you pass it in the URL, you might give away the session ID upon

referring the visitor to another site, thanks to the referer header in the HTTP request.

The files PHP creates for the purpose of storing session information are, by default,

stored in the temporary directory of the operating system under which PHP is run

ning. On Unix-based systems such as Linux, this directory will be /tmp. And, if

you’re on a shared server, the session files from all the hosted sites will be stored

together, which means that other users on the server can read the files’ contents.

They might not be able to identify which virtual host and PHP script are the owners

of the session but, depending on the information you place there, they might be

able to guess.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 281

This possibility is a serious cause for concern on shared PHP systems; the most ef

fective solution is to store your sessions in a database, rather than in the server’s

temporary directory. We’ll look more closely at custom session handlers later in

this chapter, but a partial solution is to set the session.save_path option in your

php.ini to a directory that’s not available to the public. You’ll need to contact your

hosting company in order to have the correct permissions set for that directory, so

that the nobody or wwwuser user with which PHP runs has access to read, write, and

delete files in that directory.

One final warning: with the help of a common web security exploit, cross-site

scripting, or XSS, it’s possible for an attacker to place JavaScript on your site that

will cause visitors to give away their session IDs to a remote web site, thereby allow

ing their sessions to be hijacked. If you allow your visitors to post any HTML to

your site, make sure you check and validate it very carefully. Remember the golden

rules: never rely on client-side technologies (such as JavaScript) to handle security,

and never trust any content submitted from a browser.

How do I create a session class?
You can make a simple wrapper class to handle your sessions. Doing so ensures

that if you ever want to switch to an alternative session-handling mechanism, such

as one you’ve built yourself, you simply need to modify the class rather than rewrit

ing a lot of code. We can provide an interface to the $_SESSION variable with a few

simple methods.

Solution
Our custom Session class begins with the constructor method that simply calls

session_start:

Session.class.php (excerpt)

class Session
{
 public function __construct()
 {
 session_start();

 }

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

282 The PHP Anthology

We can then add the set and get methods to set a session variable and get a session

variable, respectively:

Session.class.php (excerpt)

 public function set($name, $value)
 {
 $_SESSION[$name] = $value;

 }

 public function get($name)
 {
 if (isset($_SESSION[$name]))
 {
 return $_SESSION[$name];

 }
 else
 {
 return false;

 }
 }

Finally, we add a del method to delete a session variable, and the destroy method

to remove all session variables and reset the session:

Session.class.php (excerpt)

 public function del($name)
 {
 unset($_SESSION[$name]);

 }

 function destroy()
 {

$_SESSION = array();
 session_destroy();
 session_regenerate_id();

 }
}

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 283

How do I create a class to control
access to a section of the site?
Now we reach the business end of access control—let’s look at a class that controls

who’s permitted access to those private sections of your site. This class uses a

database to hold the access credentials and works with an HTML login form.

Solution
The Auth class wraps login, session storage, and logout functionality in a simple,

easy-to-use PHP class.

The Auth Class
The Auth class uses the following configuration settings:

access_control.ini (excerpt)

; Access Control Settings

;web form variables e.g. $_POST['login']
[login_vars]
login=login
password=password
hash=login_hash

;user login table details
[users_table]
table=user
col_login=login
col_password=password

The first two settings reflect the names of the username and password fields that

will appear on the login form we’ll build in a moment. They’ll match the names of

the $_POST variables submitted by the form: $_POST['password'], for example. The

next three settings provide details of the table in which user information is

stored—the name of the table, and the names of the username and password columns

in the table.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

284 The PHP Anthology

The database table user will be used in all the solutions in this section. Here’s the

SQL for the table:

access_control.sql (excerpt)

CREATE TABLE user (
 user_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (user_id),
 UNIQUE KEY user_login (login)
);

The Auth class body begins with the class properties:

Auth.class.php (excerpt)

class Auth
{
 protected $db;
 protected $cfg;
 protected $session;
 protected $redirect;
 protected $hashKey;

The $db property will store an instance of our DB connection class, while the $cfg

property will store the configuration settings. The $session property will store an

instance of the Session class we created in “How do I create a session class?”. The

$redirect property will store a URL to which visitors will be redirected if they

aren’t logged in, or if their usernames or passwords are incorrect; this might be a

login form, for example. The $hashKey property is a seed we provide to double-

check the usernames and passwords of users who are already logged in. I’ll explain

this in more detail later.

Now we can create the constructor method of our Auth class:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 285

Auth.class.php (excerpt)

 function __construct(PDO $db, $redirect, $hashKey)
 {
 $this->db = $db;
 $this->cfg = parse_ini_file('access_control.ini', TRUE);
 $this->redirect = $redirect;
 $this->hashKey = $hashKey;
 $this->session = new Session();
 $this->login();

 }

The constructor requires a $db parameter that accepts an instance of the PDO class

(although you can alter it to a custom class—just be sure to adjust the database in

teraction areas as required for your class). The $redirect parameter is a URL string

and the $hashKey parameter is a string.

In the constructor, we set the Auth instance variables, load the configuration file,

and create a new instance of the Session class, which we store in the $session

property; finally, we call the login method to validate the user against the database.

The login method checks the user’s login credentials:

Auth.class.php (excerpt)

 private function login()
 {
 $var_login = $this->cfg['login_vars']['login'];
 $var_pass = $this->cfg['login_vars']['password'];
 $user_table = $this->cfg['users_table']['table'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];

 if ($this->session->get('login_hash'))
 {
 $this->confirmAuth();
 return;

 }
 if (!isset($_POST[$var_login]) ||

 !isset($_POST[$var_pass]))
 {
 $this->redirect();

 }

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

286 The PHP Anthology

The configuration settings are assigned to local variables for the sake of readability.

The login method first checks to see whether values for the username and password

are currently stored in the session; if they are, it calls the confirmAuth method. If

username and password values are not stored in the session, the method checks to

see whether they’re available in the $_POST array; if they’re not, the method calls

the redirect method.

Assuming the script has found the $_POST values, it calls the md5 function to get a

digest for the password:

Auth.class.php (excerpt)

 $password = md5($_POST[$var_pass]);

We use the MD5 algorithm to store the password for security reasons, either in the

session or on the database—we don’t want to leave plain-text passwords lying

around.

The MD5 Algorithm

MD5 is a simple message digest algorithm (often referred to as one-way encryption)

that translates any string (such as a password) into a short series of ASCII characters

called an MD5 digest. A particular string will always produce the same digest,

but it’s practically impossible to guess a string that will produce a given digest.

By storing only the MD5 digest of your users’ passwords in the database, you can

verify their login credentials without actually storing the passwords on your

server! The built-in PHP function md5 lets you calculate the MD5 digest of any

string in PHP.

The script then performs a query against the database to see if it can find a record

to match the submitted username and password:

Auth.class.php (excerpt)

 try
 {
 $sql = "SELECT COUNT(*) AS num_users " .

 "FROM " . $user_table . " WHERE " .
$user_login . "=:login AND " .
 $user_pass . "=:pass";

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 287

$stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $_POST[$var_login]);

 $stmt->bindParam(':pass', $password);

 $stmt->execute();

 $row = $stmt->fetch(PDO::FETCH_ASSOC);

 }

 catch (PDOException $e)

 {

 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().

 ' Error: '.$e->getMessage()

);

 $this->redirect();

 }

 if ($row['num_users'] != 1)

 {

$this->redirect();

 }

 else

 {

 $this->storeAuth($_POST[$var_login], $password);

 }

 }

We use the PDO methods prepare and execute to perform the database query,

binding our $_POST[USER_LOGIN_VAR] and $password variables to the SQL paramet

ers :login and :pass respectively. We can’t authenticate the user reliably if a

PDOException is thrown, so in that case, we log the error and call the redirect

method.

After we fetch the result of the query, we test that there is exactly one matching re

cord. If not, we call the redirect method. Finally, assuming it has reached this

point, the script registers the username and password as session variables by way

of the storeAuth method (explained below), which makes them available for future

page requests.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

288 The PHP Anthology

login and Magic Quotes

One point to note about the loginmethod is that it assumes magic_quotes_gpc

is switched off. In the scripts that utilize this class, we’ll need to nullify the effect

of magic quotes. You can read more about this task in the section called “Checking

for Magic Quotes” in Chapter 1.

The storeAuth method is used to add the username and password digest to the

session, along with a special hash value:

Auth.class.php (excerpt)

 public function storeAuth($login, $password)
 {
 $this->session->set($this->cfg['login_vars']['login'], $login);
 $this->session->set($this->cfg['login_vars']['password'],

 $password);
 $hashKey = md5($this->hashKey . $login . $password);
 $this->session->set($this->cfg['login_vars']['hash'], $hashKey);

 }

This special hash value is comprised of a seed value—the $hashKey parameter re

quired by the constructor—as well as the username and password values. As we’ll

see in the confirmAuth method below, instead of laboriously checking the database

to verify the login credentials whenever a user requests a page, the class simply

checks that the current username and password produce a hash value that’s the

same as that stored in the session. This approach prevents potential attackers from

attempting to change the stored username after login if your PHP configuration has

register_globals enabled.

The confirmAuth method is used to double-check credentials stored in the session

once a user is logged in:

Auth.class.php (excerpt)

 private function confirmAuth()
 {
 $login = $this->session->get(

 $this->cfg['login_vars']['login']);
 $password = $this->session->get(

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 289

$this->cfg['login_vars']['password']);

 $hashKey = $this->session->get(

 $this->cfg['login_vars']['hash']);

 if (md5($this->hashKey . $login . $password) != $hashKey)

 {

 $this->logout(true);

 }

 }

Notice how we reproduce the hash built by the storeAuth method—if this fails to

match the original hash value, the user is immediately logged out.

The logout method is used to remove the login credentials from the session, destroy

the session, and return the user to the page URL stored in the $redirect property:

Auth.class.php (excerpt)

 public function logout($from = false)
 {
 $this->session->del($this->cfg['login_vars']['login']);
 $this->session->del($this->cfg['login_vars']['password']);
 $this->session->del($this->cfg['login_vars']['hash']);
 $this->session->destroy();
$this->redirect($from);

}

For security reasons, I choose to destroy the session here and start a completely

new one. However, you may want to consider whether or not you wish to destroy

the session. When the session is destroyed, not only are the Auth credentials re

moved, but all session data is as well, and a new session ID is created. If you have

session data that you don’t want to lose upon logout, you may wish to remove or

comment out the session->destroy method call.

The final piece of our Auth class is the redirect method:

Auth.class.php (excerpt)

 private function redirect($from = true)
 {
 if ($from)
 {

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

290 The PHP Anthology

header('Location: ' . $this->redirect . '?from=' .

 $_SERVER['REQUEST_URI']);

 }

 else

 {

 header('Location: ' . $this->redirect);

 }

 exit();

 }

}

The redirect method is used to return the visitor to the login form (or whichever

URL we specified upon instantiating the Auth class). By default, this method will

send the original page URL, requested in the from variable, in the query string to

the URL to which the browser is redirected—most likely the login form. This allows

the login form to read the query string and return the users to the location from

which they came; it saves the users from having to navigate back to that point, which

feature might be useful if, for example, a session times out. Note that I specified in

the logout method that redirect should not provide the from variable. If it did,

the script might return users to the URL they used to log out, trapping them in a

loop from which they can’t log in.

One important point to note here is that the redirection URL argument passed to

the constructor function should be absolute, not relative. According to the HTTP

specification, an absolute URL must be provided when a Location header is used.

Later on, when we put this class into action, I’ll break that rule and use a relative

URL, because I can’t guess the script’s location on your server. This trick works

because most recent browsers understand the relative location anyway (even though

they shouldn’t, as this doesn’t honour the specification). On a live site, though,

make sure you provide a full, absolute URL.

Finally, and most importantly, we use the exit function to terminate all further

processing. Calling the exit function prevents the calling script from sending the

protected content that follows the authentication code. Although we’ve sent a

header that should redirect the browser, we can’t rely on the browser to do what

it’s told. If the request were sent by, for instance, a Perl script pretending to be a

web browser, whoever was using the script would, no doubt, have total control over

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 291

its behavior and could quite easily ignore the instruction to redirect elsewhere.

Hence, the exit statement is crucial.

The Restricted Area
Now that you’ve seen the internals of the Auth class, let’s take a look at some code

that makes use of it.

Here’s an example of a page we want to protect. First, we list the files we require:

access.php (excerpt)

<?php
require_once 'strip_quotes.php';
require_once 'Session.class.php';
require_once 'Auth.class.php';
require_once 'dbcred.php';

strip_quotes.php is a general-purpose script that checks for magic_quotes_gpc =

On and strips them from incoming requests, if necessary. classes/Session.class.php is

the Session class required by our Auth class and classes/Auth.class.php is the Auth

class itself. dbcred.php contains our database login credentials for use with PDO. The

file contains credentials relevant to our testing environment, so you’ll need to change

them should you wish to try this on your own web server.

Next, we instantiate the PDO object and authenticate the user. This code needs to

go at the top of any page we wish to protect from unauthorized access:

access.php (excerpt)

try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
}
catch (PDOException $e)
{
 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().
 ' Error: '.$e->getMessage()

);

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

292 The PHP Anthology

header('Location: error.php?err=Database Error&msg=' .

 $e->getMessage());

 exit();

}

$auth = new Auth($dbh, 'login.php', 'secret');

if (isset($_GET['action']) && $_GET['action'] == 'logout')

{

 $auth->logout();

}

?>

First, we attempt to create a PDO instance to connect to our database. If an exception

is thrown and we can’t connect, we don’t want to reveal our protected content. In

stead, we simply log the error, and redirect the user to an error page that displays

some helpful information. Once we have a PDO instance, we can create a new Auth

instance to check the current user’s login credentials. We pass our PDO instance, the

URL of our login form—login.php, and the seed for the login details hashing func

tionality to the constructor function. Following that, we use an if statement to

check for a logout request. If a $GET['action'] variable is present and it equals the

value logout, we know the logout link has been clicked and we should log the user

out by way of the Auth->logout method. All we have to do to make a logout link

is append ?action=logout to any URL on our site.

Finally, here’s the HTML of our restricted page, complete with a logout link:

access.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
⋮ HTML head contents…

 </head>
 <body>

⋮ restricted content…
 <p><a href="<?php echo $_SERVER['PHP_SELF']; ?>?action=logout">

 Logout</p>
 </body>
</html>

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 293

The only way the user can view this page is to provide a correct username and

password. The Auth class performs the security check as soon as it’s instantiated.

If valid username and password values have been submitted via a form, they’re

stored by the Auth class in a session variable, which allows the visitor to continue

using the sites various sections without having to log in again.

Creating the login form itself isn’t complex, but it’s made even easier with the

PEAR::HTML_QuickForm package. HTML_Quickform allows us to add fields to our

form and define the validation requirements easily. I won’t launch into an explana

tion of how this works, but if you’d like to learn more about HTML_Quickform, you

can read the documentation online.7

PEAR PHP 5 E_STRICT Compliance

It should be noted that most PEAR packages are not PHP 5 E_STRICT compliant.

You can expect errors to be generated, but don’t forget that you can turn them off

with the error_reporting function. Submit a bug report to the PEAR bug system

for any errors you do come across to help stomp them out in future versions.8

Let’s begin the login form: we’ll start by setting the error reporting level and requiring

the PEAR::HTML_QuickForm package:

login.php (excerpt)

<?php
error_reporting(E_ALL);
require_once 'HTML/QuickForm.php';

We set the error reporting level to E_ALL with the error_reporting function since

we’re using PEAR packages, which will cause E_Strict errors under PHP 5.

Next we check for the presence of a $_GET['from'] variable:

7 http://pear.php.net/manual/en/package.html.html-quickform.php
8 http://pear.php.net/bugs/

Order the print version of this book to get all 500+ pages!

http://pear.php.net/manual/en/package.html.html-quickform.php
http://pear.php.net/bugs/
http://www.sitepoint.com/launch/c0688d
http://pear.php.net/manual/en/package.html.html-quickform.php
http://pear.php.net/bugs/

294 The PHP Anthology

login.php (excerpt)

if (isset($_GET['from']))
{
 $target = $_GET['from'];
}
else
{
 $target = 'access.php';
}
?>

The $_GET['from'] variable will have been set by our Auth class if it’s required.

This variable will represent the page to which the user was trying to gain access,

and from which they’ve been redirected to this login form. It’s used as the form’s

action attribute to send the user back to that page once he or she is logged in.

Otherwise, for the purposes of this demonstration, the form defaults to access.php,

our demonstration-restricted content page.

The next step is to construct our form with the PEAR::HTML_QuickForm class:

login.php (excerpt)

$form = new HTML_QuickForm('loginForm', 'POST', $target);

// Add a header to the form
$form->addElement('header', 'MyHeader', 'Please Login');

// Add a field for the login name
$form->addElement('text', 'login', 'Username');
$form->addRule('login', 'Enter your login', 'required', false,

 'client');

// Add a field for the password
$form->addElement('password', 'password', 'Password');
$form->addRule('password', 'Enter your password', 'required',

 false, 'client');

// Add a submit button
$form->addElement('submit', 'submit', ' Login ');

?>

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 295

Finally, we have the HTML for the login form page:

login.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
⋮ HTML head contents…

 </head>
 <body>
 <h1>Please log in</h1>
 <?php echo $form->toHTML(); ?>

 </body>
</html>

The finished login form can be see in Figure 10.2.

Figure 10.2. The finished login form

Discussion
Access control consists of two main parts, or stages:

Authentication

Authentication is the process by which you determine that users are who they

say they are. Our Auth class handles this determination for us in the login

method, when we confirm the username and password against the database.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

296 The PHP Anthology

We make the assumption that only the correct user will have these two pieces

of information.

Authorization

Authorization is the process by which you determine which permissions must

be given to an authenticated user. The Auth class is very limited in this respect,

as no levels of access are defined—there’s only global access or no access to the

site. Of course, you may want to grant a level of access that lies somewhere

between these extremes, in which case you should see “How to do I build a

permissions system?”

You may wonder why we handle the users in this class using a database, rather

then something similar to the HTTP authentication explained earlier. There are a

couple of reasons, actually. First, as a site grows from only a few members to hun

dreds, thousands, or millions (we hope) of members, HTTP authentication becomes

harder to handle and slower. Yes, we can add the member details to the user file,

but as this, in turn, grows larger, it takes longer for the server to read and find a

given user. Second, what if we want to store more information about the user—as,

of course, most of us do—than just the username and password? Where would we

keep that information? Well, we’d keep it in the database, of course. Doesn’t that

mean we’re storing user information in two places? Yes, that’s right and, as you

know, that’s something we’d want to avoid; it just makes the job harder for us if we

ever have to go back and change things later.

Room for Improvement
The basic mechanics of the Auth class are solid, but it lacks the more sophisticated

elements that will be necessary to halt the efforts of any serious intruders.

It’s a good idea to implement a mechanism that can keep an eye on the number of

failed login attempts made from a single client. If your application always responds

immediately to any login attempt, it will be possible for a potential intruder to make

large numbers of requests—with different username and password combinations—in

a very short time, possibly using automated software to do so. The solution is to

build a mechanism that counts the number of failed attempts using a session variable.

Every time the number of failures is divisible by three (such as when three incorrect

passwords are entered), use PHP’s sleep function to delay the next attempt by, for

example, ten seconds. You may also decide that, after a certain threshold value (15

failed attempts, for example), you block all further access from that IP address for

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 297

a given period, such as one hour. Of course, changing an IP address is easy for a

determined intruder, but you’ll stall would-be intruders, at least, and perhaps make

their lives difficult enough to persuade them to pursue their nefarious activities

elsewhere.

How do I build a registration system?
Having an authentication system is fine, but how will you fill it with users in the

first place? If only yourself and a few friends will access your site, you can probably

create accounts for all users through your database administration interface. However,

for a site that’s intended to become a flourishing community to which anyone and

everyone is free to sign up, you’ll likely need to automate this process. You’ll want

to allow visitors to register themselves, but you’ll probably conduct some level of

“screening” so that you have at least a little information about the people who have

signed up, such as a way to confirm their identities. A common and effective

screening approach is to have the registrants confirm their email address.

The purpose of the screening mechanism is to give you the ability to make it difficult

for those users who have “broken the rules” in some way and lost their account

privileges to create new accounts. You have their email addresses, or at least one

of their email addresses—if they try to register again with that address, you can

deny them access. Be warned, though: a new type of Internet service is becoming

popular. Pioneered by Mailinator, these services provide users with temporary email

addresses that they can use for registrations. This, of course, means email is not a

fool-proof screening mechanism, but it is still a worthwhile addition to a registration

system.

Solution
Here, we’ll put together a registration system that validates new registrants using

their email addresses, and in turn, sends them an email that asks them to confirm

their registration via a URL.

A registration system is yet another great opportunity to build more classes! This

time, though, it will be even more interesting, as we use the PEAR::HTML_QuickForm9

package and PEAR::Mail_Mime10 to do some of the work for the registration system.

9 http://pear.php.net/package/HTML_QuickForm/
10 http://pear.php.net/package/Mail_Mime/

Order the print version of this book to get all 500+ pages!

http://pear.php.net/package/HTML_QuickForm/
http://pear.php.net/package/Mail_Mime/
http://www.sitepoint.com/launch/c0688d
http://pear.php.net/package/HTML_QuickForm/
http://pear.php.net/package/Mail_Mime/

298 The PHP Anthology

The rest will be handled by classes we’ll build, but the end result will be easy for

you to customize and reuse in your own applications.

First of all, we need to understand the process of signing up a new user:

■	 The user fills in the registration form.

■	 Upon the user’s completion of the form, the registration system inserts a record

into the signup table and sends a confirmation email.

■	 The visitor follows the link in the email and confirms the account.

■	 We copy the details from the signup table to the user table. The account is now

active.

We use two tables for handling signups: this way, we can separate the “dangerous”

or unverified user data from the “safe” or confirmed user data. You’ll need a cron

job or similar scheduled task to check the signup table on a regular basis and delete

any entries that are older than, say, 24 hours. Our separation of the tables makes it

easier to purge the contents of the signup table (and avoid unfortunate errors), and

keep the user table trim so that there’s no unnecessary impact on performance

during user authentication.

Our solution uses a specific database structure. Here’s the SQL for the signup table:

access_control.sql (excerpt)

CREATE TABLE signup (
 signup_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 confirm_code VARCHAR(40) NOT NULL DEFAULT '',
 created INT(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (signup_id),
 UNIQUE KEY confirm_code (confirm_code),
 UNIQUE KEY user_login (login),
 UNIQUE KEY email (email)
);

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 299

Here’s the SQL for the user table:

access_control.sql (excerpt)

CREATE TABLE user (
 user_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (user_id),
 UNIQUE KEY user_login (login)
);

The SignUp Class
The first part of our solution is the SignUp class, which provides all the functionality

for signing up new users, and uses the following configuration settings:

access_control.ini (excerpt)

; Access Control Settings

;user login table details
[users_table]
table=user
col_id=user_id
col_login=login
col_password=password
col_email=email
col_name_first=firstName
col_name_last=lastName
col_signature=signature

;signup login table details
[signup_table]
table=signup
col_id=signup_id
col_login=login
col_password=password
col_email=email
col_name_first=firstName

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

300 The PHP Anthology

col_name_last=lastName

col_signature=signature

col_code=confirm_code

col_created=created

The first group of settings represent the details of the user table in our database—the

name of the database and its columns. The second group represent the database and

column names of the signup table.

Let’s define some custom exception classes so that we can provide a consistent level

of error handling:

Signup.class.php (excerpt)

class SignUpException extends Exception
{
 public function __construct($message = null, $code = 0)
{
 parent::__construct($message, $code);
 error_log('Error in '.$this->getFile().
 ' Line: '.$this->getLine().
 ' Error: '.$this->getMessage()

);
 }
}
class SignUpDatabaseException extends SignUpException {}
class SignUpNotUniqueException extends SignUpException {}
class SignUpEmailException extends SignUpException {}
class SignUpConfirmationException extends SignUpException {}

Our base class, SignUpException, is a custom exception that ensures the exception

details are logged using the error_log function. The subclasses represent different

exception situations that might arise during the signup process. This method of error

handling implementation ensures that all exceptions are logged consistently, and

allows any script that uses our SignUp class to implement custom logic to handle

the various types of exceptions. We’ll see how such logic can be implemented in

our script very soon.

We begin our SignUp class definition with the class properties:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 301

Signup.class.php (excerpt)

class SignUp
{
 protected $db;
 protected $cfg;
 protected $from;
 protected $to;
 protected $subject;
 protected $message;
 protected $html;
 protected $listener;
 protected $confirmCode;

$db will contain a PDO instance for our database connection, $cfg will store our

configuration details, $from will contain the name and address used in the confirm

ation email’s From field, $to will contain the name and address the email is sent

to, $subject will contain the subject of the email, $message will represent the body

of the email, and $html will contain a true or false value to indicate whether or

not the email is an HTML email. The $listener property will contain the URL listed

as the email confirmation link and $confirmCode will contain the unique code

needed to confirm this particular user’s registration.

The $to and $confirmCode properties are set and used internally by the class, while

the rest of the properties are initialized by the class constructor:

Signup.class.php (excerpt)

 public function __construct(PDO $db, $listener, $frmName,
 $frmAddress, $subj, $msg, $html)

 {
 $this->db = $db;
 $this->cfg = parse_ini_file('access_control.ini',

 TRUE);
 $this->listener = $listener;
 $this->from[$frmName] = $frmAddress;
 $this->subject = $subj;
 $this->message = $msg;
 $this->html = $html;

 }

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

302 The PHP Anthology

When we instantiate the object in the constructor above, we need to pass it a PDO

object instance containing the connection to the database, the URL to which regis

trants should be directed when they confirm their signups, a Sender name and From

address for use in the signup email (for example Your Name <you@yoursite.com>),

and the subject and message for the email itself. Finally, we need to identify

whether or not this is an HTML email, so that PEAR::Mail_Mime can format the

message correctly.

Whether it contains HTML or not, the message should contain at least one special

tag: <confirm_url/>. This acts as a placeholder in the message, identifying the

location in the email body at which the confirmation URL, built by the SignUp class,

should be inserted.

The createCode method is called internally within the class, and is used to generate

the confirmation code that will be sent via email:

Signup.class.php (excerpt)

 private function createCode($login)
 {
 srand((double)microtime() * 1000000);
$this->confirmCode = md5($login . time() . rand(1, 1000000));

 }

When the registration form is submitted, the createSignup method creates a record

of the registration request. The createSignup method takes the information the user

submits via the registration form, checks the database to ensure that the username

and email address do not already exist in the user table, and inserts a new record

into the signup table. Let’s take a look at how this method works:

Signup.class.php (excerpt)

 public function createSignup($userDetails)
 {
 $user_table = $this->cfg['users_table']['table'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];
 $user_email = $this->cfg['users_table']['col_email'];
 $user_first = $this->cfg['users_table']['col_name_first'];
 $user_last = $this->cfg['users_table']['col_name_last'];

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 303

$user_sig = $this->cfg['users_table']['col_signature'];

 $sign_table = $this->cfg['signup_table']['table'];

 $sign_login = $this->cfg['signup_table']['col_login'];

 $sign_pass = $this->cfg['signup_table']['col_password'];

 $sign_email = $this->cfg['signup_table']['col_email'];

 $sign_first = $this->cfg['signup_table']['col_name_first'];

 $sign_last = $this->cfg['signup_table']['col_name_last'];

 $sign_sig = $this->cfg['signup_table']['col_signature'];

 $sign_code = $this->cfg['signup_table']['col_code'];

 $sign_created = $this->cfg['signup_table']['col_created'];

 try

 {

 $sql = "SELECT COUNT(*) AS num_row FROM " . $user_table . "

 WHERE

 " . $user_login . "=:login OR

 " . $user_email . "=:email";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $userDetails[$user_login]);

 $stmt->bindParam(':email', $userDetails[$user_email]);

 $stmt->execute();

 $result = $stmt->fetch(PDO::FETCH_ASSOC);

 }

 catch (PDOException $e)

 {

 throw new SignUpDatabaseException('Database error when' .

 ' checking user is unique: '.$e->getMessage());

 }

First, we assign all the needed configuration settings to local variables to improve

the readability of our script. The first action the method performs is to complete a

database query: it counts the number of rows in the user table where the submitted

username matches the value in the login column in the database, or where the

submitted email address is a match to the value in the email column. We wrap this

action within a try {…} catch (PDOException $e) {…} block in case a

PDOException is thrown. When we catch the PDOException, we throw one of the

custom exceptions we wrote for this class—a SignUpDatabaseException.

The next step for the createSignup method is to check the results of the query and,

if it’s okay to proceed, to prepare the data for insertion into the signup table:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

304 The PHP Anthology

Signup.class.php (excerpt)

 if ($result['num_row'] > 0)
 {
 throw new SignUpNotUniqueException(

 'username and email address not unique');
 }

 $this->createCode($userDetails[$user_login]);
 $toName = $userDetails[$user_first] . ' ' .

 $userDetails[$user_last];
 $this->to[$toName] = $userDetails[$user_email];

If, on the other hand, the result is not 0, it indicates that we already have a user

with that username or email address, and it’s not okay to proceed with the signup.

Our reaction is to throw another one of our custom exceptions, this time a

SignUpNotUniqueException, to indicate that the signup details are not unique.

The final step in the createSignup method is to insert the new registration into the

signup table:

Signup.class.php (excerpt)

 try
 {
 $sql = "INSERT INTO " . $sign_table .

"(". $sign_login . ", " . $sign_pass .
 ", " . $sign_email . ", " . $sign_first .
", " . $sign_last . ", " . $sign_sig .
", " . $sign_code . ", " . $sign_created . ") ".
 "VALUES (:login, :password,
 :email, :firstname, :lastname,
 :signature, :confirm, :time)";

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':login', $userDetails[$user_login]);
 $stmt->bindParam(':password', $userDetails[$user_pass]);
 $stmt->bindParam(':email', $userDetails[$user_email]);
 $stmt->bindParam(':firstname', $userDetails[$user_first]);
 $stmt->bindParam(':lastname', $userDetails[$user_last]);
 $stmt->bindParam(':signature', $userDetails[$user_sig]);
 $stmt->bindParam(':confirm', $this->confirmCode);
 $stmt->bindParam(':time', time());
 $stmt->execute();

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 305

}

 catch (PDOException $e)

 {

 throw new SignUpDatabaseException('Database error when' .

 ' inserting into signup: '.$e->getMessage());

 }

 }

All the data in the $userDetails variable—the details submitted via the registration

form—are inserted into the signup table. If a PDOException is thrown, we throw a

new instance of our SignUpDatabaseException class.

The sendConfirmation method is used to send a confirmation email to the person

who’s just signed up:

Signup.class.php (excerpt)

 public function sendConfirmation()
 {
 // Pear Mail_Mime included in the calling script
 $fromName = key($this->from);
 $hdrs = array(

 'From' => $this->from[$fromName],
 'Subject' => $this->subject

);
 $crlf = "\n";

if ($this->html)
 {
 $replace = 'listener . '?code=' .

 $this->confirmCode . '">' . $this->listener .
 '?code=' . $this->confirmCode . '';

 }
 else
 {
 $replace = $this->listener . '?code=' . $this->confirmCode;

 }
 $this->message = str_replace('<confirm_url/>',

 $replace,
 $this->message

);

 $mime = new Mail_mime($crlf);

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

306 The PHP Anthology

$mime->setHTMLBody($this->message);

 $mime->setTXTBody(strip_tags($this->message));

 $body = $mime->get();

 $hdrs = $mime->headers($hdrs);

 $mail = Mail::factory('mail');

 $succ = $mail->send($this->to, $hdrs, $body);

if (PEAR::isError($succ))

 {

 throw new SignUpEmailException('Error sending confirmation' .

 ' email: ' .$succ->getDebugInfo());

 }

 }

The sendConfirmationmethod will generate the content of the confirmation email,

in HTML or text, by replacing the special text <confirm_url/>with the confirmation

URL the user will need to click on to confirm the registration. The confirmation

URL is generated using the $listener property, set by the class constructor method,

and the unique code returned by the confirmCode method. sendConfirmation then

uses an instance of the PEAR::Mail_mime class to create and send the email. If an

error is generated with the sending of the email, another one of our custom excep

tions, SignUpEmailException, will be thrown. We’ll also use the getDebugInfo

method of the PEAR_Error object to obtain some information about the error.

Finally, the confirm method is used to examine confirmations via the URL sent in

the email:

Signup.class.php (excerpt)

 public function confirm($confirmCode)
 {
 $user_table = $this->cfg['users_table']['table'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];
 $user_email = $this->cfg['users_table']['col_email'];
 $user_first = $this->cfg['users_table']['col_name_first'];
 $user_last = $this->cfg['users_table']['col_name_last'];
 $user_sig = $this->cfg['users_table']['col_signature'];

 $sign_table = $this->cfg['signup_table']['table'];
 $sign_id = $this->cfg['signup_table']['col_id'];
 $sign_login = $this->cfg['signup_table']['col_login'];

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 307

$sign_pass = $this->cfg['signup_table']['col_password'];

 $sign_email = $this->cfg['signup_table']['col_email'];

 $sign_first = $this->cfg['signup_table']['col_name_first'];

 $sign_last = $this->cfg['signup_table']['col_name_last'];

 $sign_sig = $this->cfg['signup_table']['col_signature'];

 $sign_code = $this->cfg['signup_table']['col_code'];

 try

 {

 $sql = "SELECT * FROM " . $sign_table . "

 WHERE " . $sign_code . "=:confirmCode";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':confirmCode', $confirmCode);

 $stmt->execute();

 $row = $stmt->fetchAll();

 }

 catch (PDOException $e)

 {

 throw new SignUpDatabaseException('Database error when' .

 ' inserting user info: '.$e->getMessage());

 }

Again, we assign configuration settings to local variables to improve the script’s

readability. First, the confirm method selects from the signup table all records that

have a value in the confirm_code column that matches the $confirmCode value.

If the number of records returned is anything other than 1, a problem has occurred

and a SignUpConfirmationException exception is thrown:

Signup.class.php (excerpt)

 if (count($row) != 1) {
 throw new SignUpConfirmationException(count($row) .

' records found for confirmation code: ' .
$confirmCode

);
 }

If only one matching record is found, the method can continue to process the con

firmation:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

308 The PHP Anthology

Signup.class.php (excerpt)

 try
 {
 // Copy the data from Signup to User table
 $sql = "INSERT INTO " . $user_table . " (

 " . $user_login . ", " . $user_pass . ",
" . $user_email . ", " . $user_first . ",
 " . $user_last . ", " . $user_sig . ") VALUES (
 :login, :pass, :email, :firstname, :lastname, :sign)";

$stmt = $this->db->prepare($sql);
 $stmt->bindParam(':login',$row[0][$sign_login]);
 $stmt->bindParam(':pass',$row[0][$sign_pass]);
 $stmt->bindParam(':email',$row[0][$sign_email]);
 $stmt->bindParam(':firstname',$row[0][$sign_first]);
 $stmt->bindParam(':lastname',$row[0][$sign_last]);
 $stmt->bindParam(':sign',$row[0][$sign_sig]);
 $stmt->execute();
 // Delete row from signup table
 $sql = "DELETE FROM " . $sign_table . "

 WHERE " . $sign_id . "= :id";
 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':id', $row[0][$sign_id]);
 $stmt->execute();

 }
 catch (PDOException $e)
 {
 throw new SignUpDatabaseException('Database error when' .

 ' inserting user info: '.$e->getMessage());
 }

 }
}

If an account is successfully confirmed, the record is copied to the user table, and

the old record is deleted from the signup table.

Thus the confirmation process, the user’s registration, and our SignUp class, is

complete!

The Signup Page
Now that our SignUp class is done, we need a web page from which to display the

registration form and run the process.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 309

The first step is to include the classes we’ll use:

signup.php (excerpt)

<?php
error_reporting(E_ALL);
require_once 'SignUp.class.php';
require_once 'HTML/QuickForm.php';
require_once 'Mail.php';
require_once 'Mail/mime.php';
require 'dbcred.php';

First, because we’re using PEAR packages, which will cause E_Strict errors under

PHP 5, we set the error reporting level to E_ALLwith the error_reporting function.

Of course, we need to include our SignUp class file. We’ll also be using the PEAR

HTML_Quickform and Mail_mime packages. The dbcred.php file contains the database

credentials we’ll need to connect to our database.

Next, we create the variables we need:

signup.php (excerpt)

$reg_messages = array(
 'success' => array(

 'title' => 'Confirmation Successful',
 'content' => '<p>Thank you. Your account has now been' .
 ' confirmed.
You can now login' .
 '</p>'

),
 'confirm_error' => array(

 'title' => 'Confirmation Problem',
 'content' => '<p>There was a problem confirming your' .
 ' account.
Please try again or contact the site ' .
 'administrators</p>'

),
 'email_sent' => array(

 'title' => 'Check your email',
 'content' => '<p>Thank you. Please check your email to ' .
 'confirm your account</p>'

),
 'email_error' => array(

 'title' => 'Email Problem',

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

310 The PHP Anthology

'content' => '<p>Unable to send confirmation email.
' .

 'Please contact the site administrators.</p>'

),

 'signup_not_unique' => array(

 'title' => 'Registration Problem',

 'content' => '<p>There was an error creating your' .

 ' account.
The desired username or email address has' .

 ' already been taken.</p>'

),

 'signup_error' => array(

 'title' => 'Registration Problem',

 'content' => '<p>There was an error creating your' .

 ' account.
Please contact the site administrators.' .

 '</p>'

)

);

$listener = 'http://localhost/phpant2/chapter_10/examples/' .

 'signup.php';

$frmName = 'Your Name';

$frmAddress = 'noreply@yoursite.com';

$subj = 'Account Confirmation';

$msg = <<<EOD

<html>

<body>

<h2>Thank you for registering!</h2>

<div>The final step is to confirm

your account by clicking on:</div>

<div><confirm_url/></div>

<div>

Your Site Team

</div>

</body>

</html>

EOD;

The $reg_messages variable contains an array of page titles and messages that will

be used in the web page, depending on the stage and status of the registration process.

$listener, $frmName, $frmAddress, $subj, and $msg are required by our Signup

class. If you have a look at the $msg variable, the body of our confirmation email,

you’ll see the special <confirm_url/> code which will be replaced by the confirm

ation URL later in the process.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d
'http://localhost/phpant2/chapter_10/examples/'

Access Control 311

The $listener variable stores the absolute URL of the script to which the confirm

ation code should be submitted. It links to itself in our example script. This variable

is set to reflect the folder setup of our testing environment, so make sure you change

this variable to suit your own setup.

The next step is to set up our database connection and instantiate our SignUp object:

signup.php (excerpt)

try
{
 // Instantiate the PDO object for the database connection
 $db = new PDO($dsn, $user, $password);
 $db->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 // Instantiate the signup class
 $signUp = new SignUp($db, $listener, $frmName,

 $frmAddress, $subj, $msg, TRUE);

Notice also that we’re opening a try block to catch any exceptions that may be

thrown from the execution of the rest of the code. Any exceptions caught after this

point—if the PDO connection fails for example—will display an appropriate message

on the web page, instead of showing a PHP error.

The next step is to check whether the page is being requested as part of a confirma

tion—we’ll check for the presence of the $_GET['code'] variable:

signup.php (excerpt)

 if (isset($_GET['code']))
 {
 try
 {
 $signUp->confirm($_GET['code']);
 $display = $reg_messages['success'];
} catch (SignUpException $e){
 $display = $reg_messages['confirm_error'];

 }
 }

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

312 The PHP Anthology

If the confirmation code is present, we call the SignUp->confirm method, supplying

the code the page received. We then set the $display variable, which will contain

the page title and message to display on our web page. If no exception was raised

from the confirm method at this point in the script, we can assume all went well

and set the $display variable to the success message. If, however, a

SignUpException exception was thrown, we set the $display variable to the con

firmation_error message. You may remember that the SignUpException class was

the base class for all our custom exceptions. By catching this class of exception,

we’ll catch an instance of any of our custom exceptions.

If the confirmation code is not present, we prepare to display the registration form:

signup.php (excerpt)

 else
 {
 function cmpPass($element, $confirmPass)
 {

$password = $GLOBALS['form']->getElementValue('password');
 return $password == $confirmPass;

 }
 function encryptValue($value)
 {
 return md5($value);

 }

The above are helper functions that will be used by our HTML_Quickform object to

validate and filter the registration form contents.

The HTML_Quickform object makes it very easy to construct the form and the form

validation:

signup.php (excerpt)

 /* Make the form */
 // Instantiate the QuickForm class
 $form = new HTML_QuickForm('regForm', 'POST');

 // Register the compare function
 $form->registerRule('compare', 'function', 'cmpPass');

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 313

// The login field

 $form->addElement('text', 'login', 'Desired Username');

 $form->addRule('login', 'Please provide a username',

 'required', FALSE, 'client');

 $form->addRule('login',

 'Username must be at least 6 characters',

 'minlength', 6, 'client');

 $form->addRule('login',

 'Username cannot be more than 50 characters', 'maxlength',

 50, 'client');

 $form->addRule('login',

 'Username can only contain letters and numbers',

 'alphanumeric', NULL, 'client');

 // The password field

 $form->addElement('password', 'password', 'Password');

 $form->addRule('password', 'Please provide a password',

 'required', FALSE, 'client');

 $form->addRule('password',

 'Password must be at least 6 characters', 'minlength', 6,

 'client');

 $form->addRule('password',

 'Password cannot be more than 12 characters', 'maxlength',

 12, 'client');

 $form->addRule('password',

 'Password can only contain letters and numbers',

 'alphanumeric', NULL, 'client');

 // The field for confirming the password

 $form->addElement('password', 'confirmPass',

 'Confirm Password');

 $form->addRule('confirmPass', 'Please confirm password',

 'required', FALSE, 'client');

 $form->addRule('confirmPass', 'Passwords must match',

 'compare', 'function');

 // The email field

 $form->addElement('text', 'email', 'Email Address');

 $form->addRule('email', 'Please enter an email address',

 'required', FALSE, 'client');

 $form->addRule('email', 'Please enter a valid email address',

 'email', FALSE, 'client');

 $form->addRule('email',

 'Email cannot be more than 50 characters',

 'maxlength', 50, 'client');

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

314 The PHP Anthology

// The first name field

 $form->addElement('text', 'firstName', 'First Name');

 $form->addRule('firstName', 'Please enter your first name',

 'required', FALSE, 'client');

 $form->addRule('firstName',

 'First name cannot be more than 50 characters', 'maxlength',

 50, 'client');

 // The last name field

 $form->addElement('text', 'lastName', 'Last Name');

 $form->addRule('lastName', 'Please enter your last name',

 'required', FALSE, 'client');

 $form->addRule('lastName',

 'Last name cannot be more than 50 characters', 'maxlength',

 50, 'client');

 // The signature field

 $form->addElement('textarea', 'signature', 'Signature');

 // Add a submit button called submit

// and "Send" as the button text

 $form->addElement('submit', 'submit', 'Register');

 /* End making the form */

After we’ve defined the registration form, we use the HTML_Quickform->validate

method to check that the form has been submitted and that it validates. If it does

validate, we can proceed to build the array of form data our SignUp object needs to

create a new signup record:

signup.php (excerpt)

 if ($form->validate())
 {
 // Apply the encryption filter to the password
 $form->applyFilter('password', 'encryptValue');

 // Build an array from the submitted form values
 $submitVars = array(

 'login' => $form->getSubmitValue('login'),
 'password' => $form->getSubmitValue('password'),
 'email' => $form->getSubmitValue('email'),
 'firstName' => $form->getSubmitValue('firstName'),

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 315

'lastName' => $form->getSubmitValue('lastName'),

 'signature' => $form->getSubmitValue('signature')

);

Since we’re using HTML_Quickform, any slashes added by magic quotes are automat

ically removed from the submitted values; when you’re not using HTML_Quickform,

be sure to strip out the slashes if magic_quotes is enabled.

Next, we call the create the signup record and send the confirmation email. We

want to wrap this in a try block in order to catch any possible exceptions:

signup.php (excerpt)

 try
 {
 $signUp->createSignup($submitVars);
 $signUp->sendConfirmation();
 $display = $reg_messages['email_sent'];

 }
 catch (SignUpEmailException $e)
 {
 $display = $reg_messages['email_error'];

 }
 catch (SignUpNotUniqueException $e)
 {
 $display = $reg_messages['signup_not_unique'];

 }
 catch (SignUpException $e)
 {
 $display = $reg_messages['signup_error'];

 }
 }

If no exceptions are thrown, we can set $display to an appropriate message that

informs the user to expect the email. If exceptions are thrown, we can set $display

to a message that’s appropriate for each one, thanks to our defining of several custom

exception classes.

If the form hasn’t been submitted yet, it’ll need to be shown to the user; we set

$display to include the form HTML source:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

316 The PHP Anthology

signup.php (excerpt)

 else
 {
 // If not submitted, display the form
 $display = array(

 'title' => 'New Registration',
 'content' => $form->toHtml()

);
 }

 }
}

We’ve reached the end of the first try block, so we need to catch any remaining ex

ception that may be thrown. If an exception is caught here, it won’t be one of our

custom exceptions. Therefore, we need to make sure that the exception details are

logged using the error_log function, and that the web page displays an appropriate

message to inform the user that registration cannot be completed:

signup.php (excerpt)

catch (Exception $e)
{
 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().
 ' Error: '.$e->getMessage()

);
 $display = $reg_messages['signup_error'];
}
?>

Now, the only task left to do is to produce the HTML source for the web page. Our

$display variable has been set to an array value containing two elements—one for

the page title and one for the page contents. This setting will display the registration

form and a confirmation message, or an error message if something has gone wrong.

These displays are inserted into the source code where appropriate:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 317

signup.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

⋮ HTML Head contents…
 </head>
 <body>
 <h1><?php echo $display['title']; ?></h1>
 <?php echo $display['content']; ?>

 </body>
</html>

The finished registration form should look like the one shown in Figure 10.3.

Figure 10.3. The finished registration form

And there we have it—a simple but fully functioning user registration system with

email confirmation facility!

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

318 The PHP Anthology

Discussion
So that you don’t grow bored, I’ve left a couple of pieces of the jigsaw puzzle for

you to fill in yourself. If a registered user exists who has the same username or email

address as the one entered by the new registrant, the createSignup method throws

an exception and the procedure is halted. If you’re happy using HTML_QuickForm,

you might want to split this check into a separate method that HTML_QuickForm can

apply as a validation rule for each field in the form. This approach should reduce

frustration when users find that the account name they chose already ex

ists—HTML_QuickForm will generate a message to inform them of this fact, preserve

the rest of the values they entered, and allow them to try again with a different

username.

If you plan to let users change their email addresses once their accounts are created,

you’ll also need to confirm the new addresses before you store them in the user

table. You should be able to reuse the methods provided by the SignUp class for

this purpose. You might even consider reusing the signup table to handle this task.

Some modifications will be required—you’ll want the confirm method to be able

to update an existing record in the user table, for example. Be very careful that you

don’t create a hole in your security, though. If you’re not checking for existing records

in the user table, a user could sign up for a new account with details that match an

existing row in the user table. You’ll then end up changing the email address of an

existing user to that of a new user, which will cause you some embarrassment, at

the very least.

How do I deal with members
who forget their passwords?
Unfortunately, humans have a tendency to forget important information such as

passwords, so a feature that allows users to retrieve forgotten passwords is an essen

tial time saver. Overlook this necessity, and you can expect to waste a lot of time

manually changing passwords for people who have forgotten them.

If you encrypt the passwords in your database, you’ll need a mechanism to generate

a new password that, preferably, is easy to remember.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 319

Be Careful with Password Hints

A common tactic used in web site registration is to use simple questions as memory

joggers should users forget their password. These questions can include “Where

were you born?” and “What’s your pet’s name?” Yet details like this may well be

common knowledge or easy for other users to guess.

Solution
Since we already have a valid email address for each account, as confirmed through

our signup procedure in “How do I build a registration system?”, we just need to

send the new password to that address. Our solution uses the user table from the

previous sections:

access_control.sql (excerpt)

CREATE TABLE user (
 user_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (user_id),
 UNIQUE KEY user_login (login)
);

The AccountMaintenance Class
The AccountMaintenance class is a utility class that, among other things, will reset

the password for a user’s account and generate an email to send the user the new

password. Our class uses the following configuration settings:

access_control.ini (excerpt)

; Access Control Settings

;web form variables e.g. $_POST['login']
[login_vars]
login=login

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

320 The PHP Anthology

;user login table details

[users_table]

table=user

col_id=user_id

col_login=login

col_password=password

col_email=email

col_name_first=firstName

col_name_last=lastName

To provide a consistent level of error handling, we define some custom exception

classes:

AccountMaintenance.class.php (excerpt)

class AccountException extends Exception
{
 public function __construct($message = null, $code = 0)
{
 parent::__construct($message, $code);
 error_log('Error in '.$this->getFile().
 ' Line: '.$this->getLine().
 ' Error: '.$this->getMessage()

);
 }
}
class AccountDatabaseException extends AccountException {}
class AccountUnknownException extends AccountException {}
class AccountPasswordException extends AccountException {}
class AccountPasswordResetException extends AccountException {}

Our base class, AccountException, is a custom exception that ensures the exception

details are logged using the error_log function. The subclasses represent different

exception situations that might arise during account maintenance.

We begin our AccountMaintenance class definition with the class properties:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 321

AccountMaintenance.class.php (excerpt)

class AccountMaintenance
{
 protected $db;
 protected $cfg;
 private $words;

$db will contain a PDO instance for our database connection, $cfg will store our

configuration details, and $words will store the path to the random words file that’s

used in password generation.

The constructor simply stores the database object for future use by the class and

loads the configuration file:

AccountMaintenance.class.php (excerpt)

 public function __construct(PDO $db)
 {
 $this->db = $db;
 $this->cfg = parse_ini_file('access_control.ini', TRUE);

 }

Since we save the user’s password in the database as an MD5 hash (a form of one-

way encryption), we can no longer find out what the original password was. If

members forget their passwords in such cases, you’ll have to make new ones for

them. You could simply generate a random string of characters, but it’s important

to remember that if you make your security systems too unfriendly, you’ll put off

legitimate users. The resetPassword method generates a more human-friendly

randomized password:

AccountMaintenance.class.php (excerpt)

 function resetPassword($login, $email)
 {
 //Put the cfg vars into local vars for readability
 $user_table = $this->cfg['users_table']['table'];
 $user_id = $this->cfg['users_table']['col_id'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];
 $user_email = $this->cfg['users_table']['col_email'];

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

322 The PHP Anthology

$user_first = $this->cfg['users_table']['col_name_first'];

 $user_last = $this->cfg['users_table']['col_name_last'];

 $user_sig = $this->cfg['users_table']['col_signature'];

 try

 {

 $sql = "SELECT " . $user_id . ",

 " . $user_login . ", " . $user_pass . ",

 " . $user_first . ", " . $user_last . "

 FROM

 " . $user_table . "

 WHERE

 " . $user_login . "=:login

 AND

 " . $user_email . "=:email";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $login);

 $stmt->bindParam(':email', $email);

 $stmt->execute();

 $row = $stmt->fetchAll(PDO::FETCH_ASSOC);

 }

 catch (PDOException $e)

 {

 throw new AccountDatabaseException('Database error when' .

 ' finding user: '.$e->getMessage());

 }

First, we assign the configuration settings to local variables to make the code a little

more readable. Next, we deal with the resetPassword method, which, when given

a combination of a username and an email address, attempts to identify the corres

ponding row in the user table.

We use both the username and email to identify the row, so it’s a little more difficult

for other people to reset your members’ passwords. Although there’s no risk of in

dividuals stealing the new password (unless they have control over a member’s

email account), it will certainly irritate people if their passwords are continually

being reset. Requiring both the username and email address of the user makes the

process a little more complex.

If we can’t find a single matching row, we throw an exception:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 323

AccountMaintenance.class.php (excerpt)

 if (count($row) != 1)
 {
 throw new AccountUnknownException('Could not find account');
}

Next, we call the generatePassword method (which we’ll discuss in a moment) to

create a new password:

AccountMaintenance.class.php (excerpt)

 try
 {
 $password = $this->generatePassword();

This method call is placed within a try block to catch the exception thrown by

generatePassword if a new password cannot be generated.

generatePassword then updates the user table with the new password (using md5

to encrypt it), and returns the new password in an array containing the user details:

AccountMaintenance.class.php (excerpt)

 $sql = "UPDATE " . $user_table . "
 SET
 " . $user_pass . "=:pass
 WHERE
 " . $user_id . "=:id";

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':pass',md5($password));
 $stmt->bindParam(':id', $row[0][$user_id]);
$stmt->execute();

 }
 catch (AccountPasswordException $e)
 {
 throw new AccountResetPasswordException('Error when' .

 ' generating password: '.$e->getMessage());
}
 catch (PDOException $e)
 {
 throw new AccountDatabaseException('Database error when' .

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

324 The PHP Anthology

' resetting password: '.$e->getMessage());

}

 $row[0][$user_pass] = $password;

 return $row;

 }

The addWords method is used to supply the class with an indexed array of words

with which to build memorable passwords:

AccountMaintenance.class.php (excerpt)

 function addWords($words)
 {
 $this->words = $words;

 }

I’ve used a list of over one thousand words, stored in a text file, to build memorable

passwords. Be aware that if anyone knows the list of words you’re using, cracking

the new password will be significantly easier, so you should create your own list.

generatePassword constructs a random password from the

AccountMaintenance->words array, adding separators that can include any number

from 0 to 9, or an underscore character:

AccountMaintenance.class.php (excerpt)

 protected function generatePassword()
 {
 $count = count($this->words);
 if ($count == 0)
 {
 throw new AccountPasswordException('No words to use!');

 }
mt_srand((double)microtime() * 1000000);
 $seperators = range(0,9);
 $seperators[] = '_';
 $password = array();
 for ($i = 0; $i < 4; $i++) {
 if ($i % 2 == 0) {
 shuffle($this->words);
 $password[$i] = trim($this->words[0]);

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 325

} else {

 shuffle($seperators);

 $password[$i] = $seperators[0];

 }

 }

 shuffle($password);

 return implode('', $password);

 }

}

The password itself will contain two words chosen at random from the list, as well

as two random separators. The order in which these elements appear in the password

is also random. The passwords this system generates might look something like

7correct9computer and 48courtclothes, which follow a format that’s relatively easy

for users to remember.

The Reset Password Page
There’s one thing we need to finish our web site’s account maintenance feature: we

need a web form that our users can fill in to request a password change or reset.

First, we include all the packages we need:

newpass.php (excerpt)

<?php
error_reporting(E_ALL);
require_once 'Session.class.php';
require_once 'AccountMaintenance.class.php';
require_once 'HTML/QuickForm.php';
require_once 'Mail.php';
require_once 'Mail/mime.php';
require_once 'dbcred.php';

We then set the error reporting level to E_ALL with the error_reporting function,

since we’re using PEAR packages that will cause E_Strict errors under PHP 5.

Of course, we need to include our AccountMaintenance class file. We’ll also be using

the PEAR HTML_Quickform and Mail_mime packages. The dbcred.php file contains

the database credentials we’ll need to connect to our database.

Next, we create the variables we need:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

326 The PHP Anthology

newpass.php (excerpt)

$reg_messages = array(
 'email_sent' => array(

 'title' => 'Check your email',
 'content' => '<p>Thank you. An email has been sent to:</p>'

),
 'email_error' => array(

 'title' => 'Email Problem',
 'content' => '<p>Unable to send your details.
' .
 'Please contact the site administrators.</p>'

),
 'no_account' => array(

 'title' => 'Account Problem',
 'content' => '<p>We could not find your account.
' .
 'Please contact the site administrators.</p>'

),
 'reset_error' => array(

 'title' => 'Password Reset Problem',
 'content' => '<p>There was an error resetting your' .
 ' password.
Please contact the site administrators.' .
 '</p>'

)
);
$yourEmail = 'you@yourdomain.com';
$subject = 'Your password';
$msg = 'Here are your login details. Please change your password.';

The $reg_messages variable contains an array of page titles and messages that will

be used in the web page at various stages of the registration process. $yourEmail,

$subject, and $msg are used in the creation of the email notification.

Next, we build our form with PEAR::HTML_Quickform:

newpass.php (excerpt)

try
{
 // Instantiate the QuickForm class
 $form = new HTML_QuickForm('passwordForm', 'POST');

 // Add a header to the form
 $form->addElement('header', 'MyHeader',

 'Forgotten Your Password?');

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 327

// Add a field for the email address

 $form->addElement('text', 'email', 'Enter your email address');

 $form->addRule('email', 'Enter your email', 'required', FALSE,

 'client');

 $form->addRule('email', 'Enter a valid email address', 'email',

 FALSE, 'client');

 // Add a field for the login

 $form->addElement('text', 'login', 'Enter your login name');

 $form->addRule('login', 'Enter your login', 'required', FALSE,

 'client');

// Add a submit button called submit with label "Send"

 $form->addElement('submit', 'submit', 'Get Password');

Notice also that we’re opening a try block: we want to catch any exceptions that

may be thrown from the execution of the rest of the code. This precaution will allow

us to display an appropriate message on the web page instead of a PHP error.

If the form has been submitted, we can begin the password changing process:

newpass.php (excerpt)

 if ($form->validate())
 {
 $db = new PDO($dsn, $user, $password);
 $db->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $aMaint = new AccountMaintenance($db);
 $rawWords = file('words.txt');
 $word = array_map('trim', $rawWords);
 $aMaint->addWords($word);

We instantiate the PDO and AccountMaintenance classes and load our words file (I

also trimmed off any whitespace that may appear before or after each word—just

in case) so we can pass it to the addWords method.

Next, we call the resetPassword method, passing the login and email values from

the form as arguments:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

328 The PHP Anthology

newpass.php (excerpt)

 $details = $aMaint->resetPassword(
 $form->getSubmitValue('login'),
 $form->getSubmitValue('email'));

If all goes well, an email is sent via PEAR::Mail_Mime to inform the user of the new

password:

newpass.php (excerpt)

 $crlf = "\n";
 $text = $msg . "\n\nLogin: " . $details[0]['login'] .

 "\nPassword: " . $details[0]['password'];

$hdrs = array(
 'From' => $yourEmail,
 'Subject' => $subject

);

 $mime = new Mail_mime($crlf);
 $mime->setTXTBody($text);
 $body = $mime->get();
 $hdrs = $mime->headers($hdrs);
 $mail = Mail::factory('mail');
// Send the message
 $succ = $mail->send($form->getSubmitValue('email'), $hdrs,

 $body);
if (PEAR::isError($succ))
 {
 $display = $reg_messages['email_error'];

 }
 else
 {
 $display = $reg_messages['email_sent'];
 $display['content'] .= '<p>' .

$form->getSubmitValue('email') . '</p>';
 }

 }

The page $display variable is set to a helpful message when the email is sent suc

cessfully; if it’s not, the $display variable displays an error message.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 329

If the form hasn’t yet been submitted, we just display the form HTML:

newpass.php (excerpt)

 else
 {
 $display = array(

 'title' => 'Reset Password',
 'content' => $form->toHtml()

);
 }
}

Finally, we catch any exceptions that may have occurred and display an appropriate

message:

newpass.php (excerpt)

catch (AccountUnknownException $e)
{
 $display = $reg_messages['no_account'];
}
catch (Exception $e)
{
 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().
 ' Error: '.$e->getMessage()

);
 $display = $reg_messages['reset_error'];
}
?>

The HTML of the Reset Password page looks like this:

newpass.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

⋮ HTML Head contents…
 </head>
 <body>

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

330 The PHP Anthology

<h1><?php echo $display['title']; ?></h1>

 <?php echo $display['content']; ?>

 </body>

</html>

Figure 10.4 shows the page’s display.

Figure 10.4. The Reset Password page

You can add a link to the bottom of your login form so that the user is able to access

the Reset Password page. Here’s an example:

Forgotten your password?

How do I let users change their passwords?
A good design test for many PHP applications is whether users can change their

passwords without needing to log back into the application afterwards. Provided

you construct your application carefully, your users should be able to go about their

business without further ado after changing their passwords. It’s important to be

considerate to your site’s users if you want them to stick around!

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 331

Solution
If we return for a minute to the session-based authentication mechanism we dis

cussed earlier in this chapter, you’ll remember that the login and md5 encrypted

password are stored in session variables and rechecked on every new page by the

Auth class. The trick is to change the value of the password in both the session

variable and the database when users change their passwords. We can perform this

trick with a small modification to the AccountMaintenance class—found in “How

do I deal with members who forget their passwords?”—and the addition of a new

form.

Modifying AccountMaintenance
With a little tweaking of the AccountMaintenance class to add a method for changing

passwords, we should be able to handle the job fairly easily. The changePassword

method requires an instance of the Auth class (found in “How do I create a class to

control access to a section of the site?”), the old password, and the new password

as arguments:

AccountMaintenance.class.php (excerpt)

 public function changePassword($auth, $oldPassword, $newPassword)
 {
 $var_login = $this->cfg['login_vars']['login'];
 $user_table = $this->cfg['users_table']['table'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];

At the beginning of the method, we store some of the configuration settings in local

variables to help the readability of the rest of the method.

The method then instantiates a new Session object (which we saw in “How do I

create a session class?”) and attempts to find the user record in the database:

AccountMaintenance.class.php (excerpt)

 $session = new Session();
 try
 {
 $sql = "SELECT *

 FROM " . $user_table . "

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

332 The PHP Anthology

WHERE

 " . $user_login . " = :login

 AND

 " . $user_pass . " = :pass";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $session->get($var_login));

 $stmt->bindParam(':pass', md5($oldPassword));

 $stmt->execute();

 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);

 }

 catch (PDOException $e)

 {

 throw new AccountDatabaseException('Database error when' .

 ' finding user: '.$e->getMessage());

}

The method first performs a database lookup to find the record of the user who’s

using the current login details—obtained from the session information—and the

old password. If a PDOException is thrown, the method throws one of our custom

exceptions, AccountDatabaseException.

The results of the database lookup are checked—if anything but a single matching

record is returned, the method will thrown an AccountUnknownException:

AccountMaintenance.class.php (excerpt)

 if (count($result) != 1)
 {
 throw new AccountUnknownException('Could not find account');
}

Finally, if no exceptions have been thrown, the method updates the password in

formation in the database with the new password:

AccountMaintenance.class.php (excerpt)

 try
 {

$sql = "UPDATE " . $user_table . "
 SET
 " . $user_pass . " = :pass

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 333

WHERE

 " . $user_login . " = :login";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $session->get($var_login));

 $stmt->bindParam(':pass', md5($newPassword));

 $stmt->execute();

 $auth->storeAuth($session->get($var_login),

 md5($newPassword));

 }

 catch (PDOException $e)

 {

 throw new AccountDatabaseException('Database error when' .

 ' updating password: '.$e->getMessage());

}

 }

After we update the information in the user table, the current session information

is also updated via the Auth->storeAuth method. Again, if the operation throws a

PDOException, we throw an AccountDatabaseException.

It’s a good idea to ask the user to enter the old password before changing it over and

giving them access with a new one. Perhaps the user logged in at an Internet café

and then left, forgetting to log out, or worse, his or her session was hijacked elec

tronically. The process of ascertaining that the user can provide the old password

can preclude some of the potential for damage, as it prevents anyone who “takes

over” the session from being able to change the password and thus assume total

control. Instead, the newcomer’s only logged in as long as the session continues.

(You may also wish to ask a user to reenter the password before completing any

major actions—like making a credit card purchase—for this very reason.)

The Change Password Form
This web page form will show you how the changePassword method can easily be

used in your registration system. We start by including all the classes and other

files we’ll need:

changepass.php (excerpt)

<?php
error_reporting(E_ALL);
require_once 'Session.class.php';

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

334 The PHP Anthology

require_once 'Auth.class.php';

require_once 'AccountMaintenance.class.php';

require_once 'HTML/QuickForm.php';

require_once 'dbcred.php';

We set the error reporting level to E_ALL with the error_reporting function, as

we’re using PEAR packages, which will cause E_Strict errors under PHP 5. We

then include our custom classes for session, authorization, and account management,

the PEAR::HTML_QuickForm package, and our database credentials file.

Next, we set the $reg_messages array to hold the page content for the different form

outcomes:

changepass.php (excerpt)

$reg_messages = array(
 'success' => array(

 'title' => 'Password Changed',
 'content' => '<p>Your password has been changed' .

 ' successfully.</p>'
),
 'no_account' => array(

 'title' => 'Account Problem',
 'content' => '<p>We could not find your account.
' .
 'Please contact the site administrators.</p>'

),
 'change_error' => array(

 'title' => 'Change Password Problem',
 'content' => '<p>There was an error changing your' .
 ' password. Please contact the site administrators,' .
 ' or click ' .
 'here to' .
 ' try again.</p>'

)
);

We then test to find out whether the user is currently authorized to see the Change

Password form, with the assistance of the Auth class:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 335

changepass.php (excerpt)

try
{
 $db = new PDO($dsn, $user, $password);
 $db->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $auth = new Auth($db, 'login.php', 'secret');

At this point, we open a try block; we want to catch any exceptions that may be

thrown from the execution of the rest of the code. Catching any exceptions from

this point will allow us to display an appropriate message on the web page instead

of a PHP error.

We instantiate the PDO and Auth classes; if the user isn’t authorized, he or she will

be redirected to the login form. And if all’s well, we start building the Change

Password form with PEAR::HTML_QuickForm:

changepass.php (excerpt)

 $form = new HTML_QuickForm('changePass', 'POST');

 function cmpPass($element, $confirm)
 {

$password = $GLOBALS['form']->getElementValue('newPassword');
 return $password == $confirm;

 }
 $form->registerRule('compare', 'function', 'cmpPass');

After instantiating the HTML_QuickForm object, we define and register the function

cmpPass that will be used to validate the password fields, to ensure that the password

and password confirmation fields match.

Then we add the form:

changepass.php (excerpt)

 $form->addElement('header', 'MyHeader', 'Change your password');

// Add a field for the old password
 $form->addElement('password', 'oldPassword',

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

336 The PHP Anthology

'Current Password');

 $form->addRule('oldPassword', 'Enter your current password',

 'required', false, 'client');

 // Add a field for the new password

 $form->addElement('password', 'newPassword', 'New Password');

 $form->addRule('newPassword', 'Please provide a password',

 'required', false, 'client');

 $form->addRule('newPassword',

 'Password must be at least 6 characters',

 'minlength', 6, 'client');

 $form->addRule('newPassword',

 'Password cannot be more than 12 chars',

 'maxlength', 50, 'client');

 $form->addRule('newPassword',

 'Password can only contain letters and ' .

 'numbers', 'alphanumeric', NULL, 'client');

 // Add a field for password confirmation

 $form->addElement('password', 'confirm', 'Confirm Password');

 $form->addRule('confirm', 'Please confirm your password',

 'required', false, 'client');

 $form->addRule('confirm', 'Your passwords do not match',

 'compare', false, 'client');

 // Add a submit button

 $form->addElement('submit', 'submit', 'Change Password');

If the form has been submitted, we can attempt to change the password:

changepass.php (excerpt)

 if ($form->validate())
 {
 $aMaint = new AccountMaintenance($db);
 $aMaint->changePassword($auth,

 $form->getSubmitValue('oldPassword'),
 $form->getSubmitValue('newPassword')

);
 $display = $reg_messages['success'];

 }

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 337

On validation of the form, we instantiate an AccountMaintenance object and call

the changePassword method. If no exceptions are thrown, we set the $display

variable to the success message.

If the form has not yet been submitted and validated, we display the form contents:

changepass.php (excerpt)

 else
 {
 // If not submitted, display the form
 $display = array(

 'title' => 'Change Password',
 'content' => $form->toHtml()

);
 }
}

The final task of our main script is to catch any possible exceptions and display

appropriate page content:

changepass.php (excerpt)

catch (AccountUnknownException $e)
{
 $display = $reg_messages['no_account'];
}
catch (Exception $e)
{
 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().
 ' Error: '.$e->getMessage()

);
 $display = $reg_messages['change_error'];
}
?>

The HTML content of the Change Password page is as follows:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

338 The PHP Anthology

changepass.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

⋮ HTML Head contents…
 </head>
 <body>
 <h1><?php echo $display['title']; ?></h1>
 <?php echo $display['content']; ?>

 </body>
</html>

Finally, the new Change Password page can be seen in Figure 10.5.

Figure 10.5. The new Change Password page

Discussion
Now that you know how to allow users to change their passwords, it should be no

problem for you to change other account settings, such as the first and last names

and the signature—simply add the details to the AccountMaintenance class. If you

want to allow users to change their email addresses, you’ll need to examine the re

gistration procedure used earlier in “How do I build a registration system?”, and

modify the SignUp class. You should make sure that users confirm a new email

address before you allow them to change it.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 339

How to do I build a permissions system?

In the previous sections, we built an authentication system that provided global

security for your web site. But, consider this: are all the members of your site equal?

You probably don’t want all of your users to have access to edit and delete articles,

for example. To deal with this issue, you need to add to the security system further

functionality that allows you to assign permissions to groups of members, permitting

only these users to perform specific actions.

Rather than assign permissions to single accounts, which would quickly become a

nightmare to administer, we’ll build a permissions system in terms of users, groups,

and permissions. Users (login accounts) will be assigned to groups, which will have

names like Administrators, Authors, Managers, and so on. Permissions reflect actions

that users will be allowed to perform within the site, and they will also be assigned

to groups. >From an administration perspective, this system will be easy to manage,

as it’ll be a simple matter to see which Permissions a particular group has, and

which users are assigned to that group.

This kind of access control is known as role-based access control. If you’d like to

read more on the theory of role-based access control, the web site of the US Govern

ment National Institute of Standards and Technology has a complete section on

it.11

Solution
Let’s leap in and build our permission system.

Setting Up the Database
Building the permissions system initially requires the construction of many-to-many

relationships between database tables. This is explained as follows:

■ A user can belong to many groups.

■ A group may have many users.

■ A permission can be assigned to many groups.

■ A group may have many permissions.

11 http://csrc.nist.gov/rbac/

Order the print version of this book to get all 500+ pages!

http://csrc.nist.gov/rbac/
http://csrc.nist.gov/rbac/
http://www.sitepoint.com/launch/c0688d
http://csrc.nist.gov/rbac/

340 The PHP Anthology

In practical terms, the way to build many-to-many relationships in MySQL is to use

a bridge table, which relates to two other tables. The bridge table stores a two-column

index, each column being the key of one of the two related tables. For example, we

have a user table and a collection table in our database. Here’s the SQL for those

tables:

access_control.sql (excerpt)

CREATE TABLE user (
 user_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (user_id),
 UNIQUE KEY user_login (login)
);

CREATE TABLE collection (
 collection_id INT(11) NOT NULL auto_increment,
 name VARCHAR(50) NOT NULL default '',
 description TEXT NOT NULL,
 PRIMARY KEY (collection_id)
);

Each user has a unique ID and login name, and several other pieces of information

associated with his or her record. Each group has a unique ID, a name, and a descrip

tion. We’ll use a bridge table to link users to their groups, and groups to their users.

Here’s the definition of the user2collection lookup table:

access_control.sql (excerpt)

CREATE TABLE user2collection (
 user_id INT(11) NOT NULL default '0',
 collection_id INT(11) NOT NULL default '0',
 PRIMARY KEY (user_id, collection_id)
);

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 341

Notice that the primary key for the table uses both columns: this ensures that no

combination of user_id and collection_id can appear more than once.

Be Aware of Reserved Words

I use “collection” to refer to “group” in MySQL. “Group” is a reserved word in

SQL, so it shouldn’t be used as a table name. Technically, it can be used with the

proper quoting, but why run the risk of confusing ourselves—and possibly MySQL?

You can find more about SQL reserved words at the MySQL web site.12

Here’s some hypothetical data that shows how the bridge table can be used:

mysql> select * from user2collection;

+---------+---------------+

| user_id | collection_id |

+---------+---------------+

1	1
2	1
2	2
3	1
4	1
+---------+---------------+

5 rows in set (0.00 sec)

This data tells us that user 1 is a member of group 1, user 2 is a member of groups

1 and 2, user 3 is a member of group 1, and so on.

We’ll also need a permission table for the purpose of keeping track of permissions:

access_control.sql (excerpt)

CREATE TABLE permission (
 permission_id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(50) NOT NULL DEFAULT '',
 description TEXT NOT NULL,
 PRIMARY KEY (permission_id)
);

12 http://dev.mysql.com/doc/refman/4.1/en/reserved-words.html

Order the print version of this book to get all 500+ pages!

http://dev.mysql.com/doc/refman/4.1/en/reserved-words.html
http://www.sitepoint.com/launch/c0688d
http://dev.mysql.com/doc/refman/4.1/en/reserved-words.html

342 The PHP Anthology

Each permission has a unique ID, a name, and a description. Permission names will

represent actions; view, create, edit and delete, for example. We’ll need a bridge

table to link groups to permissions—here’s the collection2permission table:

access_control.sql (excerpt)

CREATE TABLE collection2permission (
 collection_id INT(11) NOT NULL DEFAULT '0',
 permission_id INT(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (collection_id, permission_id)
);

With the lookup tables defined, we can now perform queries across the tables to

identify the permissions a particular user has been allowed. For example, the fol

lowing query returns all the permission names for the user with user_id 1:

SELECT p.name as permission

FROM

 user2collection uc,

INNER JOIN collection2permission cp

ON uc.collection_id = cp.collection_id

 INNER JOIN permission p

 ON cp.collection_id = p.collection_id

WHERE uc.user_id = 1;

Note that I’ve used aliases for table names, such as user2collection uc, to make

writing the query easier.

If you’ve downloaded and installed the sample access_control database mentioned

in the introduction to this chapter, you’ll find it contains three sample user accounts

with the details shown in Table 10.1.

Table 10.1. Sample User Accounts

Group Password Login

Users passwordjackblack

Editors passwordjackwhite

Administrators passwordsiteadmin

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 343

The access_control database also contains three sample groups, as shown in

Table 10.2.

Table 10.2. Sample Groups

Permissions Group

viewUsers

view, create, edit Editors

view, create, edit, delete Administrators

The User Class
The User class will encapsulate all the functionality for checking a user’s permis

sions. Our class uses the following configuration settings:

access_control.ini (excerpt)

; Access Control Settings

;web form variables e.g. $_POST['login']
[login_vars]
login=login

;user login table details
[users_table]
table=user
col_id=user_id
col_login=login
col_password=password
col_email=email
col_name_first=firstName
col_name_last=lastName
col_signature=signature

;Permission table details
[permission_table]
table=signup
col_id=permission_id
col_name=name

;Collection table details
[collection_table]
table=collection

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

344 The PHP Anthology

col_id=collection_id

col_name=name

;User to Collection lookup table details

[user_to_collection_table]

table=user2collection

col_id=user_id

col_collection_id=collection_id

;Collection to Permission lookup table details

[collection_to_permission_table]

table=collection2permission

col_id=collection_id

col_permission_id=permission_id

We define some custom exception classes to provide a consistent level of error

handling:

User.class.php (excerpt)

class UserException extends Exception
{
 public function __construct($message = null, $code = 0)
{
 parent::__construct($message, $code);
 error_log('Error in '.$this->getFile().
 ' Line: '.$this->getLine().
 ' Error: '.$this->getMessage()

);
 }
}
class UserDatabaseException extends UserException {}

Our base class, UserException, is a custom exception that ensures the exception

details are logged using the error_log function. The subclass

UserDatabaseException represents a database problem. If you were to add further

functionality to the User class, you could create further custom exceptions based

on the UserException class to cover all possible exception situations.

We begin to create the class by defining some class properties:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 345

User.class.php (excerpt)

class User
{
 protected $db;
 protected $cfg;
 protected $userId;
 protected $firstName;
 protected $lastName;
 protected $email;
 protected $permissions;

$db will contain a PDO instance for our database connection, $cfg will store our

configuration details, and the remaining properties will contain information from

the user’s account details.

The constructor takes an instance of the PDO class, loads the configuration file, and

calls the populate method:

User.class.php (excerpt)

 public function __construct(PDO $db)
 {
 $this->db = $db;
 $this->cfg = parse_ini_file('access_control.ini', TRUE);
 $this->populate();

 }

Next comes the populate method:

User.class.php (excerpt)

 private function populate()
 {
 $var_login = $this->cfg['login_vars']['login'];
 $user_table = $this->cfg['users_table']['table'];
 $user_id = $this->cfg['users_table']['col_id'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_email = $this->cfg['users_table']['col_email'];
 $user_first = $this->cfg['users_table']['col_name_first'];
 $user_last = $this->cfg['users_table']['col_name_last'];

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

346 The PHP Anthology

We load some configuration values into local variables to aid the readability of the

code.

Next, we attempt to look up the user’s details in the database:

User.class.php (excerpt)

 $session = new Session();
 try
 {
 $sql = "SELECT

 " . $user_id . ", " . $user_email . ",
" . $user_first . ", " . $user_last . "
 FROM
 " . $user_table . "
 WHERE
 " . $user_login . " = :login";

 $stmt = $this->db->prepare($sql);
 $login = $session->get($var_login);
 $stmt->bindParam(':login', $login);
 $stmt->execute();
 $row = $stmt->fetch(PDO::FETCH_ASSOC);

 }
 catch(PDOException $e)
 {
 throw new UserDatabaseException('Database error when' .

 ' populating user details: '.$e->getMessage());
 }

We first need to instantiate a new session object (which we built in “How do I create

a session class?”). The session login variable is then used as the key to find the

user’s details in the user table. If a PDOException is thrown, we throw our custom

UserDatabaseException.

Once we’ve retrieved the user’s record from the database, we store all the detail in

the User object properties:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 347

User.class.php (excerpt)

 $this->userId = $row[$user_id];
 $this->email = $row[$user_email];
 $this->firstName = $row[$user_first];
 $this->lastName = $row[$user_last];
 }

Populate pulls this user’s record from the database and stores various useful pieces

of information from that record in the object’s variables so that we can access them

easily; for example, when we want to display the user’s name on the page. The most

important aspect is to gather the user_id value from the database, for the purpose

of checking permissions.

We also add a few accessor methods. Accessor methods allow public access to

otherwise protected object properties—they allow the properties to be read without

granting public access to users of the class to write to them:

User.class.php (excerpt)

 public function getId()
 {
 return $this->userId;

 }

 public function getFirstName()
 {
 return $this->firstName;

 }

 public function getLastName()
 {
 return $this->lastName;

 }

 public function getEmail()
 {
 return $this->email;

 }

Finally, we add the checkPermission method. This method takes a named permis

sion as an argument and checks that the user has that permission:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

348 The PHP Anthology

User.class.php (excerpt)

 public function checkPermission($permission)
 {
 if (!isset($this->permissions))
 {
 $perm_table = $this->cfg['permission_table']['table'];
 $perm_id = $this->cfg['permission_table']['col_id'];
 $perm_name = $this->cfg['permission_table']['col_name'];
 $u2c_table = $this->cfg['user_to_collection_table']['table'];
 $u2c_id = $this->cfg['user_to_collection_table']['col_id'];
 $c2p_table = $this->cfg['collection_to_permission_table']

➥['table'];
 $c2p_id = $this->cfg['collection_to_permission_table']

➥['col_id'];
 $c2p_pid = $this->cfg['collection_to_permission_table']

➥['col_permission_id'];

The first step we take is to check that the permissions array for this user has been

set. If not, we proceed with the database lookup. Before we perform the lookup,

though, we assign some configuration settings to local variables to help improve

our code’s readability.

Next, we assemble the SQL query and perform the lookup using the User->userId

property as the key:

User.class.php (excerpt)

 try
 {
 $this->permissions = array();
 $sql = 'SELECT p.'. $perm_name .' as perm

 FROM
 ' . $u2c_table . ' uc
INNER JOIN ' . $c2p_table . ' cp
ON uc.' . $u2c_id . ' = cp.' . $c2p_id . '
 INNER JOIN ' . $perm_table . ' p
 ON cp.' . $c2p_pid . ' = p.' . $perm_id . '
 WHERE uc.user_id =:user';

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':user', $this->userId);
 $stmt->execute();

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 349

while ($row = $stmt->fetch(PDO::FETCH_ASSOC))

 {

 $this->permissions[] = $row['permission'];

 }

 }

 catch(PDOException $e)

 {

 throw new UserDatabaseException('Database error when' .

 ' checking permissions: '.$e->getMessage());

 }

 }

If the lookup has returned database rows, we store them in object User->permissions

property array. This means that if we need to check permissions more than once

on a page, that check will only come at the cost of a single query. And, as usual, if

a PDOException is thrown, we in turn throw our custom UserDatabaseException.

Finally, we check that the permission passed into the method as an argument in

the $permission variable is included in the user’s permissions array:

User.class.php (excerpt)

 if (in_array($permission, $this->permissions))
 {
 return true;

 }
 else
 {
 return false;

 }
 }
}

The checkPermission simply returns true if the user has the permission, and false

if not.

The Permissions Test Page
Now, to test our permissions system, we can build a permissions testing page. This

testing page will require you to log in using the details of one of the accounts in the

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

350 The PHP Anthology

user table, and will simulate an attempt to access one of four defined permission

levels in the permission table—view, create, edit, and delete.

First, we need to include all the required classes and the database credentials file:

permissions.php (excerpt)

<?php
require_once 'Session.class.php';
require_once 'Auth.class.php';
require_once 'User.class.php';
require_once 'dbcred.php';

Next, we instantiate our PDO, Auth (which we met in “How do I create a class to

control access to a section of the site?”), and User objects:

permissions.php (excerpt)

try
{
 $db = new PDO($dsn, $user, $password);
 $auth = new Auth($db, 'login.php', 'secret');
 $authuser = new User($db);

The Auth object will make sure the current user is authorized, and redirect them to

the login form if not. If the user is authorized, we create a User object in order to

be able to check the user’s permissions.

We’re simulating permissions through a query string variable—$_GET['view']:

permissions.php (excerpt)

 switch (@$_GET['view']) {
 case 'create':
 $permission = 'create';
 $msg = 'You are able to create new content.';
 break;

 case 'edit':
 $permission = 'edit';
 $msg = 'You are able to edit existing content.';
 break;

 case 'delete':

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 351

$permission = 'delete';

 $msg = 'You are able to delete existing content.';

 break;

 default:

 $permission = 'view';

 $msg = 'You are able to read existing content.';

 }

We set the permission level and the $msg variable—the message that appears on the

page—to reflect the value of $_GET['view'].

Next, we test the user’s permissions:

permissions.php (excerpt)

 if (!$authuser->checkPermission($permission)) {
 $msg = 'You do not have permission to do this.';

 }

If the user doesn’t have the required permission, we take appropriate action. Since

this demonstration is merely a test, we simply set the page message to indicate that

the user does not have the required permission level. In a production web applica

tion, you’d redirect the user to the login form, adding a message to indicate that

they’re not authorized to obtain that level of access.

Finally, we make sure to catch any exceptions and take appropriate action:

permissions.php (excerpt)

}
catch (Exception $e)
{
 $msg = 'An error has occurred: ' . $e->getMessage();
}
?>

The only task left is to create the HTML for our permissions testing page:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

352 The PHP Anthology

permissions.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

⋮ HTML Head contents…
 </head>
 <body>
 <h1>Permissions Test</h1>
 <p>
 <a href="<?php echo $_SERVER['PHP_SELF']; ?>">View |
 <a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?view=create">Create |

 <a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?view=edit">Edit |

 <a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?view=delete">Delete

 </p>
 <h2><?php echo $authuser->getFirstName() . ' ' .

$authuser->getLastName(); ?></h2>
 <p>Permission Level: '<?php echo $permission ?>'</p>
 <p><?php echo $msg; ?></p>

 </body>
</html>

The testing page is very simple. First, we have a menu of links that test each permis

sion level by appending the appropriate query string to the link URLs. Then ,we

have a simple page body that consists of the current user’s name, the current per

mission level, and the message set by the permissions test.

Discussion
The User class fetches data on a “need to know” basis. That is, despite the fact that

some user data is retrieved on instantiation using the populate method, the data

pertaining to permissions may not be needed every time the User class is instantiated.

It’s likely that we’ll only check permissions on a restricted number of pages, so we

can save ourselves a database query when the user views public pages, and leave

the checkPermission method to be called only when needed. This approach of only

fetching data from the database at the moment it is needed—as opposed to performing

all the queries at the beginning—is known as lazy fetching, and can be a useful ap

proach to reducing unnecessary queries and performance overhead.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 353

The permissions testing page was a simple example, of course, but you could use

the checkPermission method any way you like—perhaps within if statements to

decide what a user is allowed to do and see. Another approach would be to use a

variable, such as the $msg variable we’ve used here, to store the name of a PHP

script, which contained the restricted content, for use with an include statement.

Otherwise, that’s all there is to it. Now, all you need to do is build an administration

interface to control Users, Groups, and Permissions. Well, what are you waiting for?

How do I store sessions in a database?
As discussed earlier, in “How do I use sessions?”, the default behavior of sessions

in PHP on the server side is to create a temporary file in which session data is stored.

This file is usually kept in the temporary directory of the operating system and, as

such, presents a security risk to your applications, especially if you’re using a shared

server.

Solution
Use the PHP function session_set_save_handler to specify a custom session

handler that provides an alternative data store that’s fully under your control. The

session_set_save_handler function definition is as follows:

bool session_set_save_handler (callback $open,

 callback $close,

 callback $read,

 callback $write,

 callback $destroy,

 callback $gc

);

Each callback argument is a function that must conform to the PHP session’s API.

You can read more about the function on The PHP Manual page.13 You can simply

implement a separate function for each callback; however, in this solution we create

a new class—the DatabaseSession class—to encapsulate all our session handling

needs, and use a PDO object to connect to a database and store session information

there.

13 http://www.php.net/session_set_save_handler/

Order the print version of this book to get all 500+ pages!

http://www.php.net/session_set_save_handler/
http://www.sitepoint.com/launch/c0688d
http://www.php.net/session_set_save_handler/

354 The PHP Anthology

Before we delve deep into the details of the class, I’ll show you the create statement

for the session table we use. This statement provides a minimal amount of inform

ation for you to keep track of, so feel free to add more if you wish—for example,

you might like to store the IP address or the last page visited. Just remember to add

the new columns and values to the queries that are used throughout the class’s

methods below:

CREATE TABLE session (

 sess_id VARCHAR(255),

 sess_start DATETIME,

 sess_last_acc DATETIME,

 sess_data VARCHAR(255),

 PRIMARY KEY (sess_id)

);

The DatabaseSession Class
Now, let’s look at the class. We begin by defining the class properties:

DatabaseSession.class.php (excerpt)

class DatabaseSession
{
 private $sess_table;
 private $sess_db;
 private $sess_db_host;
 private $sess_db_usr;
 private $sess_db_pass;
 private $db;

$sess_table will store the database table name, $sess_db will store the database

name, $sess_db_host will store the database server hostname, $sess_db_usr will

store the database username, and $sess_db_pass will store the database password.

The $db property will store the PDO object used for all the database queries.

Next, we define the constructor method:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 355

DatabaseSession.class.php (excerpt)

 public function __construct($sess_db_usr = 'user',
$sess_db_pass = 'passwd',
$sess_table = 'session',
$sess_db = 'dbname',
$sess_db_host = 'locolhost')

 {
 $this->sess_db_usr = $sess_db_usr;
 $this->sess_db_pass = $sess_db_pass;
 $this->sess_table = $sess_table;
 $this->sess_db = $sess_db;
 $this->sess_db_host = $sess_db_host;

 }

The constructor simply stores the database information passed to the method

within the object’s properties.

The first function callback that we must pass to the session_set_save_handler

function is an open function, which is called when a session is started. The open

method of the DatabaseSession class will handle that job:

DatabaseSession.class.php (excerpt)

 public function open($path, $name)
 {
 try
 {
 $dsn = "mysql:host={$this->sess_db_host};".

 "dbname={$this->sess_db}";
 $this->db = new PDO($dsn, $this->sess_db_usr,

 $this->sess_db_pass);
 $this->db->setAttribute(PDO::ATTR_ERRMODE,

 PDO::ERRMODE_EXCEPTION);
 }
 catch (PDOException $e)
 {
 error_log('Error connecting to the session database.');
 error_log('Reason given:'.$e->getMessage()."\n");
 return false;

 }
 return true;

 }

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

356 The PHP Anthology

This method is called with two string arguments—the path of the session file and

the name of the file—and must return either true or false. The path and filename

information is irrelevant to us as we’re using a database, so we do nothing with it.

In the method, we make the connection to the database that will hold the session

data. If there’s an error, we return false; if the database connection is successful, we

return true.

The next function callback we need to implement is the close function, so we add

a close method to our class:

DatabaseSession.class.php (excerpt)

 public function close()
 {
 $this->db = null;
 return true;

 }

The close method is called when we end a session, and must return either true or

false. It isn’t uncommon to manually call the garbage collection (gc) method here,

though it isn’t strictly necessary—PHP will do its own garbage collection throughout.

We remove our database connection by setting the close method to null.

session_set_save_handler also requires that a read function be implemented.

The read function needs to take the session ID as an argument and return a

string—even an empty one, if that’s appropriate. We implement a read method in

our class:

DatabaseSession.class.php (excerpt)

 public function read($sess_id)
 {
 try
 {
 $sql = "SELECT sess_data FROM {$this->sess_table} WHERE " .

 "sess_id = :id";
 $stmt = $this->db->prepare($sql);
 $stmt->execute(array(':id'=>$sess_id));
 $res = $stmt->fetchAll(PDO::FETCH_ASSOC);

 }
 catch (PDOException $e)

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 357

{

error_log('Error reading the session data table in the' .

 ' session reading method.');

 error_log(' Query with error: '.$sql);

 error_log(' Reason given:'.$e->getMessage()."\n");

 return '';

}

 if (count($res) > 0)

 {

return isset($res[0]['sess_data']) ?

$res[0]['sess_data'] : '';

 }

 else

 {

 return '';

 }

 }

The read method retrieves the session data from the database, using the session ID

as the key, and returns the data as a string. If no data is found or there’s a database

error, an empty string is returned.

After the read function, the next function callback we need to implement is the

write function. This function, as the name implies, handles the writing of the session

data. The function is required to take two arguments—the session ID and the session

data—and the return value must be either true or false. We implement a write

method in our class-based solution. In our method, we first see if the session ID is

already in the database:

DatabaseSession.class.php (excerpt)

 public function write($sess_id, $data)
 {
 try
 {
 $sql = "SELECT sess_data FROM {$this->sess_table} WHERE " .

 "sess_id = :id";
 $stmt = $this->db->prepare($sql);
 $stmt->execute(array(':id'=>$sess_id));
 $res = $stmt->fetchAll(PDO::FETCH_ASSOC);

 }
 catch (PDOException $e)

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

358 The PHP Anthology

{

error_log('Error reading the session data table in the' .

 ' session writing method.');

 error_log(' Query with error: '.$sql);

 error_log(' Reason given:'.$e->getMessage()."\n");

 return false;

}

The $res variable contains the result of our database lookup. Based upon this result,

we either update the existing session record with an SQL UPDATE query or insert a

new one with an SQL INSERT query:

DatabaseSession.class.php (excerpt)

 try
 {
 if (count($res) > 0)
{
 $sql = "UPDATE {$this->sess_table} SET" .

 " sess_last_acc = NOW(), sess_data = :data" .
 " WHERE sess_id = :id";

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':data', $data);
 $stmt->bindParam(':id', $sess_id);

}
 else
{
 $sql ="INSERT INTO {$this->sess_table}(sess_id," .

 " sess_start, sess_last_acc," .
 " sess_data) VALUES (:id, NOW(), NOW(), :data)";

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':id', $sess_id);
 $stmt->bindParam(':data', $data);
}
 $res = $stmt->execute();

 }

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 359

If you know you’ll only be using MySQL as your database, consider using the RE

PLACE syntax instead.14 Since we don’t want to limit our class to MySQL, we use

the longer but more compatible method above.

Finally, we need to catch any PDOExceptions and return true or false:

DatabaseSession.class.php (excerpt)

 catch (PDOException $e)
 {
 error_log('Error writing to the session data table.');
 error_log('Query with error: '.$sql);
 error_log('Reason given:'.$e->getMessage()."\n");
 return false;

 }
 return true;

 }

Our next task is to implement a destroy function, which, as the name suggests, is

called when the session is destroyed. It receives the session ID as an argument and

must return either true or false. In our class method destroy, we simply delete the

session from the database using the session ID as the key, and return false if an error

occurs or true if the operation succeeds:

DatabaseSession.class.php (excerpt)

 public function destroy($sess_id)
 {
 try
 {
 $sql = "DELETE FROM {$this->sess_table} WHERE sess_id = :id";
 $stmt = $this->db->prepare($sql);
 $stmt->execute(array(':id'=>$sess_id));
}
 catch (PDOException $e)
 {
 error_log('Error destroying the session.');
 error_log('Query with error: '.$sql);

14 REPLACE is a MySQL extension to the SQL standard that either inserts a new row, or deletes an old

row and inserts the new row if the old row had the same value as the new row for a PRIMARY KEY or

UNIQUE index. You can read more about it at http://dev.mysql.com/doc/refman/5.1/en/replace.html.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d
http://dev.mysql.com/doc/refman/5.1/en/replace.html

360 The PHP Anthology

error_log('Reason given:'.$e->errorMessage()."\n");

 return false;

 }

 return true;

 }

The final function we are required to implement is the gc, or garbage collection,

function, which is used to clean out any old sessions that were never closed properly.

It receives an integer argument for the “time to live” (TTL) value for a session. In

our class method, gc, we delete any session record where the last access time is less

then the current time, minus the TTL value:

DatabaseSession.class.php (excerpt)

 public function gc($ttl)
 {
 $end = time() - $ttl;
 try
 {
 $sql = "DELETE FROM {$this->sess_table} WHERE" .

 " sess_last_acc <:end";
 $stmt = $this->db->prepare($sql);
 $stmt->execute(array(':id'=>$end));

 }
 catch (PDOException $e)
 {
 error_log('Error with the garbage collection method of the' .

 ' session class.');
 error_log('Query with error: '.$sql);
 error_log('Reason given:'.$e->getMessage());
 return false;

 }
 return true;

 }

The garbage collection method is called by PHP as dictated by the php.ini settings

session.gc_probability and session.gc_divisor, and is checked every time a

new session is started. Again, you can call it manually in the session close method

if you wish.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Access Control 361

MySQL MyISAM Engine Performance

If your session table sees high rates of insertions and deletions, you should consider

adding an OPTIMIZE TABLE query to the garbage collection function to regain

memory and help increase performance. For more information on OPTIMIZE

TABLE, see the MySQL manual.15

Finally, we implement a class __destruct method. This step is necessitated by the

changes that were made in how PHP sessions are closed after version 5.0.5. Basically,

we just have to make sure the session is explicitly written and closed by calling the

session_write_close function. You can read more about this task on the manual

page.16 Here’s our __destruct method and the end of our class definition:

DatabaseSession.class.php (excerpt)

 public function __destruct()
 {
 session_write_close();

 }
}

Using the DatabaseSession Class
Here’s a simple script to test our new DatabaseSession class:

dbsession.php (excerpt)

<?php
require_once 'DatabaseSession.class.php';

$session = new DatabaseSession('user', 'secret', 'session',
 'access_control','localhost');

session_set_save_handler(array($session, 'open'),
 array($session, 'close'),
 array($session, 'read'),
 array($session, 'write'),
 array($session, 'destroy'),
 array($session, 'gc')

);

15 http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
16 http://www.php.net/session_set_save_handler/

Order the print version of this book to get all 500+ pages!

http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://www.php.net/session_set_save_handler/
http://www.php.net/session_set_save_handler/
http://www.sitepoint.com/launch/c0688d
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://www.php.net/session_set_save_handler/

362 The PHP Anthology

session_start();

$name = (isset($_SESSION['name']))? $_SESSION['name'] :'';

if ($name !== '')

{

 echo 'Welcome ', $name, ' to your session!';

}

else

{

 echo 'Lets start the session!';

 $_SESSION['name'] = 'PHP';

}

?>

We include our DatabaseSession class, then instantiate the DatabaseSession object.

Next, we use session_set_save_handler to register our custom PHP session-

handling methods. Then we have a quick little demonstration to show us that the

session is working—the first time you load the web page you should see the message

“Let’s start the session!" We then set the $_SESSION['name'] to PHP. When you re

fresh the web page, the message should change to “Welcome PHP to your session!”

which indicates that our session data is being stored and retrieved correctly in the

database.

Welcome to database-saved sessions!

Summary
In this chapter we’ve investigated HTTP authentication and PHP sessions, and

created a complete access control system that can manage user registrations, pass

word resets, and changes, including authorization, groups, and multiple permission

levels.

Phew! Well, there you have it—total access control over your site! Now you have

the power to bark “Denied” at those that shouldn’t be in restricted areas, and roll

out the red carpet for those that should. Can you feel the warm glow of power

gathering within you? Will you use it for good—or evil? Either way, I hope you’ve

enjoyed it and learned a bit along the way.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Chapter11
Caching
In the good old days when building web sites was as easy as knocking up a few

HTML pages, the delivery of a web page to a browser was a simple matter of having

the web server fetch a file. A site’s visitors would see its small, text-only pages almost

immediately, unless they were using particularly slow modems. Once the page was

downloaded, the browser would cache it somewhere on the local computer so that,

should the page be requested again, after performing a quick check with the server

to ensure the page hadn’t been updated, the browser could display the locally cached

version. Pages were served as quickly and efficiently as possible, and everyone was

happy.

Then dynamic web pages came along and spoiled the party by introducing two

problems:

■	 When a request for a dynamic web page is received by the server, some interme

diate processing must be completed, such as the execution of scripts by the PHP

engine. This processing introduces a delay before the web server begins to deliver

the output to the browser. This may not be a significant delay where simple PHP

scripts are concerned, but for a more complex application, the PHP engine may

have a lot of work to do before the page is finally ready for delivery. This extra

364 The PHP Anthology

work results in a noticeable time lag between the user’s requests and the actual

display of pages in the browser.

■	 A typical web server, such as Apache, uses the time of file modification to inform

a web browser of a requested page’s age, allowing the browser to take appropriate

caching action. With dynamic web pages, the actual PHP script may change only

occasionally; meanwhile, the content it displays, which is often fetched from a

database, will change frequently. The web server has no way of discerning up

dates to the database, so it doesn’t send a last modified date. If the client (that

is, the user’s browser) has no indication of how long the data will remain valid,

it will take a guess. This is problematic if the browser decides to use a locally

cached version of the page which is now out of date, or if the browser decides

to request from the server a fresh copy of the page, which actually has no new

content, making the request redundant. The web server will always respond

with a freshly constructed version of the page, regardless of whether or not the

data in the database has actually changed.

To avoid the possibility of a web site visitor viewing out-of-date content, most

web developers use a meta tag or HTTP headers to tell the browser never to use

a cached version of the page. However, this negates the web browser’s natural

ability to cache web pages, and entails some serious disadvantages. For example,

the content delivered by a dynamic page may only change once a day, so there’s

certainly a benefit to be gained by having the browser cache a page—even if only

for 24 hours.

If you’re working with a small PHP application, it’s usually possible to live with

both issues. But as your site increases in complexity—and attracts more

traffic—you’ll begin to run into performance problems. Both these issues can be

solved, however: the first with server-side caching; the second, by taking control

of client-side caching from within your application. The exact approach you use to

solve these problems will depend on your application, but in this chapter, we’ll

consider both PHP and a number of class libraries from PEAR as possible panaceas

for your web page woes.

Note that in this chapter’s discussions of caching, we’ll look at only those solutions

that can be implemented in PHP. For a more general introduction, the definitive

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 365

discussion of web caching is represented by Mark Nottingham’s tutorial.1 Further

more, the solutions in this chapter should not be confused with some of the script

caching solutions that work on the basis of optimizing and caching compiled PHP

scripts, such as Zend Accelerator2 and ionCube PHP Accelerator.3

How do I prevent web

browsers from caching a page?

If timely information is crucial to your web site and you wish to prevent out-of-date

content from ever being visible, you need to understand how to prevent web

browsers—and proxy servers—from caching pages in the first place.

Solutions
There are two possible approaches we could take to solving this problem: using

HTML meta tags, and using HTTP headers.

Using HTML Meta Tags
The most basic approach to the prevention of page caching is one that utilizes HTML

meta tags:

<meta http-equiv="expires" content="Mon, 26 Jul 1997 05:00:00 GMT"/>

<meta http-equiv="pragma" content="no-cache" />

The insertion of a date that’s already passed into the Expires meta tag tells the

browser that the cached copy of the page is always out of date. Upon encountering

this tag, the browser usually won’t cache the page. Although the Pragma: no-cache

meta tag isn’t guaranteed, it’s a fairly well-supported convention that most web

browsers follow. However, the two issues associated with this approach, which

we’ll discuss below, may prompt you to look at the alternative solution.

Using HTTP Headers
A better approach is to use the HTTP protocol itself, with the help of PHP’s header

function, to produce the equivalent of the two HTML meta tags above:

1 http://www.mnot.net/cache_docs/
2 http://www.zend.com/
3 http://www.php-accelerator.co.uk/

Order the print version of this book to get all 500+ pages!

http://www.mnot.net/cache_docs/
http://www.zend.com/
http://www.php-accelerator.co.uk/
http://www.sitepoint.com/launch/c0688d
http://www.mnot.net/cache_docs/
http://www.zend.com/
http://www.php-accelerator.co.uk/

366 The PHP Anthology

<?php

 header('Expires: Mon, 26 Jul 1997 05:00:00 GMT');

 header('Pragma: no-cache');

?>

We can go one step further than this, using the Cache-Control header that’s suppor

ted by HTTP 1.1-capable browsers:

<?php

 header('Expires: Mon, 26 Jul 1997 05:00:00 GMT');

 header('Cache-Control: no-store, no-cache, must-revalidate');

 header('Cache-Control: post-check=0, pre-check=0', FALSE);

 header('Pragma: no-cache');

?>

For a precise description of HTTP 1.1 Cache-Control headers, have a look at the

W3C’s HTTP 1.1 RFC.4 Another great source of information about HTTP headers,

which can be applied readily to PHP, is mod_perl’s documentation on issuing correct

headers.5

Discussion
Using the Expires meta tag sounds like a good approach, but two problems are as

sociated with it:

■	 The browser first has to download the page in order to read the meta tags. If a

tag wasn’t present when the page was first requested by a browser, the browser

will remain blissfully ignorant and keep its cached copy of the original.

■	 Proxy servers that cache web pages, such as those common to ISPs, generally

won’t read the HTML documents themselves. A web browser might know that

it shouldn’t cache the page, but the proxy server between the browser and the

web server probably doesn’t—it will continue to deliver the same out-of-date

page to the client.

On the other hand, using the HTTP protocol to prevent page caching essentially

guarantees that no web browser or intervening proxy server will cache the page, so

4 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
5 http://perl.apache.org/docs/general/correct_headers/correct_headers.html

The PHP Anthology (www.sitepoint.com)

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://perl.apache.org/docs/general/correct_headers/correct_headers.html
http://perl.apache.org/docs/general/correct_headers/correct_headers.html
http://www.sitepoint.com/launch/c0688d
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://perl.apache.org/docs/general/correct_headers/correct_headers.html

Caching 367

visitors will always receive the latest content. In fact, the first header should accom

plish this on its own; this is the best way to ensure a page is not cached. The Cache-

Control and Pragma headers are added for some degree of insurance. Although they

don’t work on all browsers or proxies, the Cache-Control and Pragma headers will

catch some cases in which the Expires header doesn’t work as intended—if the

client computer’s date is set incorrectly, for example.

Of course, to disallow caching entirely introduces the problems we discussed at

the start of this chapter: it negates the web browser’s natural ability to cache pages,

and can create unnecessary overhead, as new versions of pages are always requested,

even though those pages may not have been updated since the browser’s last request.

We’ll look at the solution to these issues in just a moment.

How do I control client-side caching?
We addressed the task of disabling client-side caching in “How do I prevent web

browsers from caching a page?”, but disabling the cache is rarely the only (or best)

option.

Here we’ll look at a mechanism that allows us to take advantage of client-side caches

in a way that can be controlled from within a PHP script.

Apache Required!

This approach will only work if you’re running PHP as an Apache web server

module, because it requires use of the function getallheaders—which only

works with Apache—to fetch the HTTP headers sent by a web browser.

Solutions
In controlling client-side caching you have two alternatives. You can set a date on

which the page will expire, or respond to the browser’s request headers. Let’s see

how each of these tactics is executed.

Setting a Page Expiry Header
The header that’s easiest to implement is the Expires header—we use it to set a

date on which the page will expire, and until that time, web browsers are allowed

to use a cached version of the page. Here’s an example of this header at work:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

368 The PHP Anthology

expires.php (excerpt)

<?php
function setExpires($expires) {
 header(

 'Expires: '.gmdate('D, d M Y H:i:s', time()+$expires).'GMT');
}
setExpires(10);
echo ('This page will self destruct in 10 seconds
');
echo ('The GMT is now '.gmdate('H:i:s').'
');
echo ('View Again
');
?>

In this example, we created a custom function called setExpires that sets the HTTP

Expires header to a point in the future, defined in seconds. The output of the above

example shows the current time in GMT, and provides a link that allows us to view

the page again. If we follow this link, we’ll notice the time updates only once every

ten seconds. If you like, you can also experiment by using your browser’s Refresh

button to tell the browser to refresh the cache, and watching what happens to the

displayed date.

Acting on the Browser’s Request Headers
A more useful approach to client-side cache control is to make use of the Last-

Modified and If-Modified-Since headers, both of which are available in HTTP

1.0. This action is known technically as performing a conditional GET request;

whether your script returns any content depends on the value of the incoming If-

Modified-Since request header.

If you use PHP version 4.3.0 and above on Apache, the HTTP headers are accessible

with the functions apache_request_headers and apache_response_headers. Note

that the function getallheaders has become an alias for the new

apache_request_headers function.

This approach requires that you send a Last-Modified header every time your PHP

script is accessed. The next time the browser requests the page, it sends an If-

Modified-Since header containing a time; your script can then identify whether

the page has been updated since that time. If it hasn’t, your script sends an HTTP

304 status code to indicate that the page hasn’t been modified, and exits before

sending the body of the page.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 369

Let’s see these headers in action. The example below uses the modification date of

a text file. To simulate updates, we first need to create a way to randomly write to

the file:

ifmodified.php (excerpt)

<?php
$file = 'ifmodified.txt';
$random = array (0,1,1);
shuffle($random);
if ($random[0] == 0) {
 $fp = fopen($file, 'w');
 fwrite($fp, 'x');
 fclose($fp);
}
$lastModified = filemtime($file);

Our simple randomizer provides a one-in-three chance that the file will be updated

each time the page is requested. We also use the filemtime function to obtain the

last modified time of the file.

Next, we send a Last-Modified header that uses the modification time of the text

file. We need to send this header for every page we render, to cause visiting browsers

to send us the If-Modifed-Since header upon every request:

ifmodified.php (excerpt)

header('Last-Modified: ' .
gmdate('D, d M Y H:i:s', $lastModified) . ' GMT');

Our use of the getallheaders function ensures that PHP gives us all the incoming

request headers as an array. We then need to check that the If-Modified-Since

header actually exists; if it does, we have to deal with a special case caused by older

Mozilla browsers (earlier than version 6), which appended an illegal extra field to

their If-Modified-Since headers. We use PHP’s strtotime function to generate a

timestamp from the date the browser sent us. If there’s no such header, we set this

timestamp to zero, which forces PHP to give the visitor an up-to-date copy of the

page:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

370 The PHP Anthology

ifmodified.php (excerpt)

$request = getallheaders();
if (isset($request['If-Modified-Since']))
{
 $modifiedSince = explode(';', $request['If-Modified-Since']);
 $modifiedSince = strtotime($modifiedSince[0]);
}
else
{
 $modifiedSince = 0;
}

Finally, we check to see whether or not the cache has been modified since the last

time the visitor received this page. If it hasn’t, we simply send a 304 Not Modified

response header and exit the script, saving bandwidth and processing time by

prompting the browser to display its cached copy of the page:

ifmodified.php (excerpt)

if ($lastModified <= $modifiedSince)
{
 header('HTTP/1.1 304 Not Modified');
 exit();
}

echo ('The GMT is now '.gmdate('H:i:s').'
');
echo ('View Again
');
?>

Remember to use the “View Again” link when you run this example (clicking the

Refresh button usually clears your browser’s cache). If you click on the link re

peatedly, the cache will eventually be updated; your browser will throw out its

cached version and fetch a new page from the server.

If you combine the Last-Modified header approach with time values that are already

available in your application—for example, the time of the most recent news art

icle—you should be able to take advantage of web browser caches, saving bandwidth

and improving your application’s perceived performance in the process.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 371

Be very careful to test any caching performed in this manner, though; if you get it

wrong, you may cause your visitors to consistently see out-of-date copies of your

site.

Discussion
HTTP dates are always calculated relative to Greenwich Mean Time (GMT). The

PHP function gmdate is exactly the same as the date function, except that it auto

matically offsets the time to GMT based on your server’s system clock and regional

settings.

When a browser encounters an Expires header, it caches the page. All further re

quests for the page that are made before the specified expiry time use the cached

version of the page—no request is sent to the web server. Of course, client-side

caching is only truly effective if the system time on the computer is accurate. If the

computer’s time is out of sync with that of the web server, you run the risk of pages

either being cached improperly, or never being updated.

The Expires header has the advantage that it’s easy to implement; in most cases,

however, unless you’re a highly organized person, you won’t know exactly when

a given page on your site will be updated. Since the browser will only contact the

server after the page has expired, there’s no way to tell browsers that the page they’ve

cached is out of date. In addition, you also lose some knowledge of the traffic visiting

your web site, since the browser will not make contact with the server when it re

quests a page that’s been cached.

How do I examine HTTP
headers in my browser?
How can you actually check that your application is running as expected, or debug

your code, if you can’t actually see the HTTP headers? It’s worth knowing exactly

which headers your script is sending, particularly when you’re dealing with HTTP

cache headers.

Solution
Several worthy tools are available to help you get a closer look at your HTTP

headers:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

372 The PHP Anthology

LiveHTTPHeaders (http://livehttpheaders.mozdev.org/)

This add-on to the Firefox browser is a simple but very handy tool for examining

request and response headers while you’re browsing.

Firebug (http://getfirebug.org/)

Another useful Firefox add-on, Firebug is a tool whose interface offers a dedic

ated tab for examining HTTP request information.

HTTPWatch (http://www.httpwatch.com/)

This add-on to Internet Explorer for HTTP viewing and debugging is similar to

LiveHTTPHeaders above.

Charles Web Debugging Proxy (http://getcharles.com/)

Available for Windows, Mac OS X, and Linux or Unix, the Charles Web Debug

ging Proxy is a proxy server that allows developers to see all the HTTP traffic

between their browsers and the web servers to which they connect.

Any of these tools will allow you to inspect the communication between the server

and browser.

How do I cache file downloads

with Internet Explorer?

If you’re developing file download scripts for Internet Explorer users, you might

notice a few issues with the download process. In particular, when you’re serving

a file download through a PHP script that uses headers such as Content-Disposi

tion: attachment, filename=myFile.pdf or Content-Disposition: inline,

filename=myFile.pdf, and that tells the browser not to cache pages, Internet Ex

plorer won’t deliver that file to the user.

Solutions
Internet Explorer handles downloads in a rather unusual manner: it makes two re

quests to the web site. The first request downloads the file and stores it in the cache

before making a second request, the response to which is not stored. The second

request invokes the process of delivering the file to the end user in accordance with

the file’s type—for instance, it starts Acrobat Reader if the file is a PDF document.

Therefore, if you send the cache headers that instruct the browser not to cache the

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d
(http://livehttpheaders.mozdev.org/)
(http://getfirebug.org/)
(http://www.httpwatch.com/)
(http://getcharles.com/)

Caching 373

page, Internet Explorer will delete the file between the first and second requests,

with the unfortunate result that the end user receives nothing!

If the file you’re serving through the PHP script won’t change, one solution to this

problem is simply to disable the “don’t cache” headers, pragma and cache-control,

which we discussed in “How do I prevent web browsers from caching a page?”, for

the download script.

If the file download will change regularly, and you want the browser to download

an up-to-date version of it, you’ll need to use the Last-Modified header that we

met in “How do I control client-side caching?”, and ensure that the time of modific

ation remains the same across the two consecutive requests. You should be able to

achieve this goal without affecting users of browsers that handle downloads correctly.

One final solution is to write the file to the file system of your web server and simply

provide a link to it, leaving it to the web server to report the cache headers for you.

Of course, this may not be a viable option if the file is supposed to be secured.

How do I use output buffering
for server-side caching?
Server-side processing delay is one of the biggest bugbears of dynamic web pages.

We can reduce server-side delay by caching output. The page is generated normally,

performing database queries and so on with PHP; however, before sending it to the

browser, we capture and store the finished page somewhere—in a file, for instance.

The next time the page is requested, the PHP script first checks to see whether a

cached version of the page exists. If it does, the script sends the cached version

straight to the browser, avoiding the delay involved in rebuilding the page.

Solution
Here, we’ll look at PHP’s in-built caching mechanism, the output buffer, which can

be used with whatever page rendering system you prefer (templates or no templates).

Consider situations in which your script displays results using, for example, echo

or print, rather than sending the data directly to the browser. In such cases, you

can use PHP’s output control functions to store the data in an in-memory buffer,

which your PHP script has both access to and control over.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

374 The PHP Anthology

Here’s a simple example that demonstrates how the output buffer works:

buffer.php (excerpt)

<?php
ob_start();
echo '1. Place this in the buffer
';
$buffer = ob_get_contents();
ob_end_clean();
echo '2. A normal echo
';
echo $buffer;
?>

The buffer itself stores the output as a string. So, in the above script, we commence

buffering with the ob_start function, and use echo to display a piece of text which

is stored in the output buffer automatically. We then use the ob_get_contents

function to fetch the data the echo statement placed in the buffer, and store it in

the $buffer variable. The ob_end_clean function stops the output buffer and

empties the contents; the alternative approach is to use the ob_end_flush function,

which displays the contents of the buffer.

The above script displays the following output:

2. A normal echo

1. Place this in the buffer

In other words, we captured the output of the first echo, then sent it to the browser

after the second echo. As this simple example suggests, output buffering can be a

very powerful tool when it comes to building your site; it provides a solution for

caching, as we’ll see in a moment, and is also an excellent way to hide errors from

your site’s visitors, as is discussed in Chapter 9. Output buffering even provides a

possible alternative to browser redirection in situations such as user authentication.

In order to improve the performance of our site, we can store the output buffer

contents in a file. We can then call on this file for the next request, rather than

having to rebuild the output from scratch again. Let’s look at a quick example of

this technique. First, our example script checks for the presence of a cache file:

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 375

sscache.php (excerpt)

<?php
if (file_exists('./cache/page.cache'))
{
 readfile('./cache/page.cache');
 exit();
}

If the script finds the cache file, we simply output its contents and we’re done!

If the cache file is not found, we proceed to output the page using the output buffer:

sscache.php (excerpt)

ob_start();
?>
<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Cached Page</title>

 </head>
 <body>
 This page was cached with PHP's
 <a href="http://www.php.net/outcontrol"

 >Output Control Functions
 </body>
</html>
<?php
$buffer = ob_get_contents();
ob_end_flush();

Before we flush the output buffer to display our page, we make sure to store the

buffer contents in the $buffer variable.

The final step is to store the saved buffer contents in a text file:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

376 The PHP Anthology

sscache.php (excerpt)

$fp = fopen('./cache/page.cache','w');
fwrite($fp,$buffer);
fclose($fp);
?>

The page.cache file contents are exactly same as the HTML that was rendered by

the script:

cache/page.cache (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Cached Page</title>

 </head>
 <body>
 This page was cached with PHP's
 <a href="http://www.php.net/outcontrol"

 >Output Control Functions
 </body>
</html>

Discussion
For an example that shows how to use PHP’s output buffering capabilities to handle

errors more elegantly, have a look at the PHP Freaks article “Introduction to Output

Buffering,” by Derek Ford.6

What About Template Caching?
Template engines often include template caching features—Smarty is a case in

point.7 Usually, these engines offer a built-in mechanism for storing a compiled

version of a template (that is, the native PHP generated from the template), which

prevents us developers from having to recompile the template every time a page is

requested.

6 http://www.phpfreaks.com/tutorials/59/0.php
7 http://smarty.php.net/

The PHP Anthology (www.sitepoint.com)

http://www.phpfreaks.com/tutorials/59/0.php
http://www.phpfreaks.com/tutorials/59/0.php
http://smarty.php.net/
http://smarty.php.net/
http://www.sitepoint.com/launch/c0688d
http://www.phpfreaks.com/tutorials/59/0.php
http://smarty.php.net/

Caching 377

This process should not be confused with output—or content—caching, which

refers to the caching of the rendered HTML (or other output) that PHP sends to the

browser. In addition to the content cache mechanisms discussed in this chapter,

Smarty can cache the contents of the HTML page. Whether you use Smarty’s content

cache or one of the alternatives discussed in this chapter, you can successfully use

both template and content caching together on the same site.

HTTP Headers and Output Buffering
Output buffering can help solve the most common problem associated with the

header function, not to mention the issues surrounding session_start and

set_cookie. Normally, if you call any of these functions after page output has begun,

you’ll get a nasty error message. When output buffering’s turned on, the only output

types that can escape the buffer are HTTP headers. If you use ob_start at the very

beginning of your application’s execution, you can send headers at whichever point

you like, without encountering the usual errors. You can then write out the buffered

page content all at once, when you’re sure that no more HTTP headers are required.

Use Output Buffering Responsibly

While output buffering can helpfully solve all our header problems, it should

not be used solely for that reason. By ensuring that all output is generated after

all the headers are sent, you’ll save the time and resource overheads involved in

using output buffers.

How do I cache just the parts of
a page that change infrequently?
Caching an entire page is a simplistic approach to output buffering. While it’s easy

to implement, that approach negates the real benefits presented by PHP’s output

control functions to improve your site’s performance in a manner that’s relevant to

the varying lifetimes of your content.

No doubt, some parts of the page that you send to visitors will change very rarely,

such as the page’s header, menus, and footer. But other parts—for example, the list

of comments on your blog posts—may change quite often. Fortunately, PHP allows

you to cache sections of the page separately.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

378 The PHP Anthology

Solution
Output buffering can be used to cache sections of a page in separate files. The page

can then be rebuilt for output from these files.

This technique eliminates the need to repeat database queries, while loops, and so

on. You might consider assigning each block of the page an expiry date after which

the cache file is recreated; alternatively, you may build into your application a

mechanism that deletes the cache file every time the content it stores is changed.

Let’s work through an example that demonstrates the principle. Firstly, we’ll create

two helper functions, writeCache and readCache. Here’s the writeCache function:

smartcache.php (excerpt)

<?php
 function writeCache($content, $filename)
 {
 $fp = fopen('./cache/' . $filename, 'w');
 fwrite($fp, $content);
 fclose($fp);

 }

The writeCache function is quite simple; it just writes the content of the first argu

ment to a file with the name specified in the second argument, and saves that file

to a location in the cache directory. We’ll use this function to write our HTML to

the cache files.

The readCache function will return the contents of the cache file specified in the

first argument if it has not expired—that is, the file’s last modified time is not older

than the current time minus the number of seconds specified in the second argument.

If it has expired or the file does not exist, the function returns false:

smartcache.php (excerpt)

 function readCache($filename, $expiry)
 {
 if (file_exists('./cache/' . $filename))
 {
 if ((time() - $expiry) > filemtime('./cache/' . $filename))
 {

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 379

return false;

 }

 $cache = file('./cache/' . $filename);

 return implode('', $cache);

 }

 return false;

 }

For the purposes of demonstrating this concept, I’ve used a procedural approach.

However, I wouldn’t recommend doing this in practice, as it will result in very

messy code and is likely to cause issues with file locking. For example, what happens

when someone accesses the cache at the exact moment it’s being updated? Better

solutions will be explained later on in the chapter.

Let’s continue this example. After the output buffer is started, processing begins.

First, the script calls readCache to see whether the file header.cache exists; this

contains the top of the page—the HTML <head> tag and the start <body> tag. We’ve

used PHP’s date function to display the time at which the page was actually

rendered, so you’ll be able to see the different cache files at work when the page is

displayed:

smartcache.php (excerpt)

 ob_start();
 if (!$header = readCache('header.cache', 604800))
 {
?>
<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Chunked Cached Page</title>
 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1"/>
 </head>
 <body>
 <p>The header time is now: <?php echo date('H:i:s'); ?></p>

<?php
 $header = ob_get_contents();

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

380 The PHP Anthology

ob_clean();

 writeCache($header,'header.cache');

 }

Note what happens when a cache file isn’t found: the header content is output and

assigned to a variable, $header, with ob_get_contents, after which the ob_clean

function is called to empty the buffer. This allows us to capture the output in

“chunks” and assign them to individual cache files with the writeCache function.

The header of the page is now stored as a file, which can be reused without our

needing to rerender the page. Look back to the start of the if condition for a moment.

When we called readCache, we gave it an expiry time of 604800 seconds (one week);

readCache uses the file modification time of the cache file to determine whether

the cache is still valid.

For the body of the page, we’ll use the same process as before. However, this time,

when we call readCache, we’ll use an expiry time of five seconds; the cache file

will be updated whenever it’s more than five seconds old:

smartcache.php (excerpt)

 if (!$body = readCache('body.cache', 5))
 {
 echo 'The body time is now: ' . date('H:i:s') . '
';
 $body = ob_get_contents();
 ob_clean();
 writeCache($body, 'body.cache');

 }

The page footer is effectively the same as the header. After the footer, the output

buffering is stopped and the contents of the three variables that hold the page data

are displayed:

smartcache.php (excerpt)

 if (!$footer = readCache('footer.cache', 604800)) {
?>

 <p>The footer time is now: <?php echo date('H:i:s'); ?></p>
 </body>
</html>

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 381

<?php

 $footer = ob_get_contents();

 ob_clean();

 writeCache($footer, 'footer.cache');

 }

 ob_end_clean();

 echo $header . $body . $footer;

?>

The end result looks like this:

The header time is now: 17:10:42

The body time is now: 18:07:40

The footer time is now: 17:10:42

The header and footer are updated on a weekly basis, while the body is updated

whenever it is more than five seconds old. If you keep refreshing the page, you’ll

see the body time updating.

Discussion
Note that if you have a page that builds content dynamically, based on a number

of variables, you’ll need to make adjustments to the way you handle your cache

files. For example, you might have an online shopping catalog whose listing pages

are defined by a URL such as:

http://example.com/catalogue/view.php?category=1&page=2

This URL should show page two of all items in category one; let’s say this is the

category for socks. But if we were to use the caching code above, the results of the

first page of the first category we looked at would be cached, and shown for any

request for any other page or category, until the cache expiry time elapsed. This

would certainly confuse the next visitor who wanted to browse the category for

shoes—that person would see the cached content for socks!

To avoid this issue, you’ll need to incorporate the category ID and page number in

to the cache file name like so:

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d
http://example.com/catalogue/view.php?category=1&page=2

382 The PHP Anthology

$cache_filename = 'catalogue_' . $category_id . '_' .

 $page . '.cache';

 if (!$catalogue = readCache($cache_filename, 604800))

 {

⋮ display the category HTML…
 }

This way, the correct cached content can be retrieved for every request.

Nesting Buffers

You can nest one buffer within another practically ad infinitum simply by calling

ob_start more than once. This can be useful if you have multiple operations

that use the output buffer, such as one that catches the PHP error messages, and

another that deals with caching. Care needs to be taken to make sure that

ob_end_flush or ob_end_clean is called every time ob_start is used.

How do I use PEAR::Cache_Lite
for server-side caching?
The previous solution explored the ideas behind output buffering using the PHP

ob_* functions. Although we mentioned at the time, that approach probably isn’t

the best way to meet to dual goals of keeping your code maintainable and having a

reliable caching mechanism. It’s time to see how we can put a caching system into

action in a manner that will be reliable and easy to maintain.

Solution
In the interests of keeping your code maintainable and having a reliable caching

mechanism, it’s a good idea to delegate the responsibility of caching logic to classes

you trust. In this case, we’ll use a little help from PEAR::Cache_Lite (version 1.7.2

is used in the examples here).8 Cache_Lite provides a solid yet easy-to-use library

for caching, and handles issues such as: file locking; creating, checking for, and

deleting cache files; controlling the output buffer; and directly caching the results

from function and class method calls. More to the point, Cache_Lite should be rel

8 http://pear.php.net/package/Cache_Lite/

The PHP Anthology (www.sitepoint.com)

http://pear.php.net/package/Cache_Lite/
http://pear.php.net/package/Cache_Lite/
http://www.sitepoint.com/launch/c0688d
http://pear.php.net/package/Cache_Lite/

Caching 383

atively easy to apply to an existing application, requiring only minor code modific

ations.

Cache_Lite has four main classes. First is the base class, Cache_Lite, which deals

purely with creating and fetching cache files, but makes no use of output buffering.

This class can be used alone for caching operations in which you have no need for

output buffering, such as storing the contents of a template you’ve parsed with PHP.

The examples here will not use Cache_Lite directly, but will instead focus on the

three subclasses. Cache_Lite_Function can be used to call a function or class

method and cache the result, which might prove useful for storing a MySQL query

result set, for example. The Cache_Lite_Output class uses PHP’s output control

functions to catch the output generated by your script and store it in cache files; it

allows you to perform tasks such as those we completed in “How do I cache just

the parts of a page that change infrequently?”. The Cache_Lite_File class bases

cache expiry on the timestamp of a master file, with any cache file being deemed

to have expired if it is older than the timestamp.

Let’s work through an example that shows how you might use Cache_Lite to create

a simple caching solution. When we’re instantiating any child classes of Cache_Lite,

we must first provide an array of options that determine the behavior of Cache_Lite

itself. We’ll look at these options in detail in a moment. Note that the cacheDir

directory we specify must be one to which the script has read and write access:

cachelite.php (excerpt)

<?php
 require_once 'Cache/Lite/Output.php';
 $options = array(
 'cacheDir' => './cache/',
 'writeControl' => 'true',
 'readControl' => 'true',
 'fileNameProtection' => false,
 'readControlType' => 'md5'

);
 $cache = new Cache_Lite_Output($options);

For each chunk of content that we want to cache, we need to set a lifetime (in

seconds) for which the cache should live before it’s refreshed. Next, we use the

start method, available only in the Cache_Lite_Output class, to turn on output

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

384 The PHP Anthology

buffering. The two arguments passed to the start method are an identifying value

for this particular cache file, and a cache group. The group is an identifier that allows

a collection of cache files to be acted upon; it’s possible to delete all cache files in

a given group, for example (more on this in a moment). The start method will

check to see if a valid cache file is available and, if so, it will begin outputting the

cache contents. If a cache file is not available, start will return false and begin

caching the following output.

Once the output for this chunk has finished, we use the end method to stop buffering

and store the content as a file:

cachelite.php (excerpt)

 $cache->setLifeTime(604800);

 if (!$cache->start('header', 'Static')) {
?>
<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>PEAR::Cache_Lite example</title>
 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1"/>
</head>
<body>
 <h2>PEAR::Cache_Lite example</h2>
 <p>The header time is now: <?php echo date('H:i:s'); ?></p>
<?php

 $cache->end();
 }

To cache the body and footer, we follow the same procedure we used for the header.

Note that, again, we specify a five-second lifetime when caching the body:

cachelite.php (excerpt)

 $cache->setLifeTime(5);
 if (!$cache->start('body', 'Dynamic')) {
 echo 'The body time is now: ' . date('H:i:s') . '
';
 $cache->end();

 }

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 385

$cache->setLifeTime(604800);

 if (!$cache->start('footer', 'Static')) {

?>

 <p>The footer time is now: <?php echo date('H:i:s'); ?></p>

 </body>

</html>

<?php

 $cache->end();

 }

?>

On viewing the page, Cache_Lite creates cache files in the cache directory. Because

we’ve set the fileNameProtection option to false, Cache_Lite creates the files

with these names:

■ ./cache/cache_Static_header

■ ./cache/cache_Dynamic_body

■ ./cache/cache_Static_footer

You can read about the fileNameProtection option—and many more—in “What

configuration options does Cache_Lite support?”. When the same page is requested

later, the code above will use the cached file if it is valid and has not expired.

Protect your Cache Files

Make sure that the directory in which you place the cache files is not publicly

available, or you may be offering your site’s visitors access to more than you

realize.

What configuration options
does Cache_Lite support?
When instantiating Cache_Lite (or any of its subclasses, such as

Cache_Lite_Output), you can use any of a number of approaches to controlling its

behavior. These options should be placed in an array and passed to the constructor

as shown below (and in the previous section):

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

386 The PHP Anthology

$options = array(

 'cacheDir' => './cache/',

 'writeControl' => true,

 'readControl' => true,

 'fileNameProtection' => false,

 'readControlType' => 'md5'

);

 $cache = new Cache_Lite_Output($options);

Solution
The options available in the current version of Cache_Lite (1.7.2) are:

cacheDir

This is the directory in which the cache files will be placed. It defaults to /tmp/.

caching

This option switches on and off the caching behavior of Cache_Lite. If you have

numerous Cache_Lite calls in your code and want to disable the cache for de

bugging, for example, this option will be important. The default value is true

(caching enabled).

lifeTime

This option represents the default lifetime (in seconds) of cache files. It can be

changed using the setLifeTime method. The default value is 3600 (one hour),

and if it’s set to null, the cache files will never expire.

fileNameProtection

With this option activated, Cache_Lite uses an MD5 encryption hash to generate

the filename for the cache file. This option protects you from error when you

try to use IDs or group names containing characters that aren’t valid for file

names; fileNameProtection must be turned on when you use

Cache_Lite_Function. The default is true (enabled).

fileLocking

This option is used to switch the file locking mechanisms on and off. The default

is true (enabled).

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 387

writeControl

This option checks that a cache file has been written correctly immediately after

it has been created, and throws a PEAR::Error if it finds a problem. Obviously,

this facility would allow your code to attempt to rewrite a cache file that was

created incorrectly, but it comes at a cost in terms of performance. The default

value is true (enabled).

readControl

This option checks any cache files that are being read to ensure they’re not

corrupt. Cache_Lite is able to place inside the file a value, such as the string

length of the file, which can be used to confirm that the cache file isn’t corrupt.

There are three alternative mechanisms for checking that a file is valid, and

they’re specified using the readControlType option. These mechanisms come

at the cost of performance, but should help to guarantee that your visitors aren’t

seeing scrambled pages. The default value is true (enabled).

readControlType

This option lets you specify the type of read control mechanism you want to

use. The available mechanisms are a cyclic redundancy check (crc32, the default

value) using PHP’s crc32 function, an MD5 hash using PHP’s md5 function (md5),

or a simple and fast string length check (strlen). Note that this mechanism is

not intended to provide security from people tampering with your cache files;

it’s just a way to spot corrupt files.

pearErrorMode

This option tells Cache_Lite how it should return PEAR errors to the calling

script. The default is CACHE_LITE_ERROR_RETURN, which means Cache_Lite will

return a PEAR::Error object.

memoryCaching

With memory caching enabled, every time a file is written to the cache, it is

stored in an array in Cache_Lite. The saveMemoryCachingState and

getMemoryCachingState methods can be used to store and access the memory

cache data between requests. The advantage of this facility is that the complete

set of cache files can be stored in a single file, reducing the number of disk

read/write operations by reconstructing the cache files straight into an array to

which your code has access. The memoryCaching option may be worth further

investigation if you run a large site. The default value is false (disabled).

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

388 The PHP Anthology

onlyMemoryCaching

If this option is enabled, only the memory caching mechanism will be used.

The default value is false (disabled).

memoryCachingLimit

This option places a limit on the number of cache files that will be stored in

the memory caching array. The more cache files you have, the more memory

will be used up by memory caching, so it may be a good idea to enforce a limit

that prevents your server from having to work too hard. Of course, this option

places no restriction on the size of each cache file, so just one or two massive

files may cause a problem. The default value is 1000.

automaticSerialization

If enabled, this option will automatically serialize all data types. While this

approach will slow down the caching system, it is useful for caching nonscalar

data types such as objects and arrays. For higher performance, you might con

sider serializing nonscalar data types yourself. The default value is false (dis

abled).

automaticCleaningFactor

This option will automatically clean old cache entries—on average, one in x

cache writes, where x is the value set for this option. Therefore, setting this

value to 0 will indicate no automatic cleaning, and a value of 1 will cause cache

clearing on every cache write. A value of 20 to 200 is the recommended starting

point if you wish to enable this facility; it causes cache cleaning to happen, on

average, 0.5% to 5% of the time. The default value is 0 (disabled).

hashedDirectoryLevel

When set to a nonzero value, this option will enable a hashed directory structure.

A hashed directory structure will improve the performance of sites that have

thousands of cache files. If you choose to use hashed directories, start by setting

this value to 1, and increasing it as you test for performance improvements. The

default value is 0 (disabled).

errorHandlingAPIBreak

This option was added to enable backwards compatibility with code that uses

the old API. When the old API was run in CACHE_LITE_ERROR_RETURN mode

(see the pearErrorMode option earlier in this list), some functions would return

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 389

a Boolean value to indicate success, rather than returning a PEAR_Error object.

By setting this value to true, the PEAR_Error object will be returned instead.

The default value is false (disable).

How do I purge the Cache_Lite cache?
The built-in lifetime mechanism for Cache_Lite cache files provides a good

foundation for keeping your cache files up to date, but there will be some circum

stances in which you need the files to be updated immediately.

Solution
In cases in which you need immediate updates, the methods remove and clean

come in handy. The remove method is designed to delete a specific cache file; it

takes as arguments the cache ID and group name of the file. To delete the page body

cache file we created in “How do I use PEAR::Cache_Lite for server-side caching?”,

we’d use this code:

$cache->remove('body', 'Dynamic');

If we use the clean method, we can delete all the files in our cache directory simply

by calling the method with no arguments; alternatively, we can specify a group of

cache files to delete. If we wanted to delete both the header and footer cache files

we created in “How do I use PEAR::Cache_Lite for server-side caching?”, we could

do so like this:

$cache->clean('Static');

Discussion
The remove and clean methods should obviously be called in response to events

that arise within an application. For example, if you have a discussion forum ap

plication, you probably want to remove the relevant cache files when a visitor posts

a new message.

Although it may seem like this solution entails a lot of code modifications, with

some care it can be applied to your application in a global manner. If you have a

central script that’s included in every page, your script can simply watch for incom

ing events—for example, a variable like $_GET['newPost']—and respond by deleting

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

390 The PHP Anthology

the required cache files. This keeps the cache file removal mechanism central and

easier to maintain. You might also consider using the php.ini setting auto_pre

pend_file to include this code in every PHP script.

How do I cache function calls?
Many web sites provide access to their data via web services such as SOAP and

XML-RPC.9 As web services are accessed over a network, it’s often a very good idea

to cache results so that they can be fetched locally, rather than repeating the same

slow request to the server multiple times. A simple approach might be to use PHP

sessions, but as that solution operates on a per-visitor basis, the opening requests

for each visitor will still be slow.

Solution
Let’s assume you wish to create a web page that lists all the SitePoint books available

on Amazon. The actual list is not likely to change from moment to moment, so why

would we make the request to the Amazon web service every time the web page is

displayed? We won’t! Instead, we can take advantage of Cache_Lite by caching the

results of the XML-RPC request.

Requires PEAR::SOAP Version 0.11.0

The following solution uses the PEAR::SOAP library version 0.11.0 to access the

Amazon web service. You can find this package on the PEAR web site.10

Here’s some hypothetical code that fetches the data from the remote Amazon server:

$results = $amazonClient->ManufacturerSearchRequest($params);

Using Cache_Lite_Function, we can cache the results so the data returned from

the service can be reused; this will avoid unnecessary network calls and significantly

improve performance.

The following example code focuses on the caching aspect to prevent us from getting

bogged down in the details of using the Amazon web service. You can see the

9 You can read all about web services in Chapter 12.
10 http://pear.php.net/package/soap/

The PHP Anthology (www.sitepoint.com)

http://pear.php.net/package/soap/
http://www.sitepoint.com/launch/c0688d
http://pear.php.net/package/soap/

Caching 391

complete script if you download this book’s code archive from the SitePoint web

site.

The Cache_Lite_Function requires the inclusion of the following file:

cachefunction.php (excerpt)

 require_once 'Cache/Lite/Function.php';

We instantiate the Cache_Lite_Function class with some options:

cachefunction.php (excerpt)

 $options = array(
 'cacheDir' => './cache/',
 'fileNameProtection' => true,
 'writeControl' => true,
 'readControl' => true,
 'readControlType' => 'strlen',
 'defaultGroup' => 'SOAP'

);
 $cache = new Cache_Lite_Function($options);

It’s important that the fileNameProtection option is set to true (this is in fact the

default value, but in this case I’ve set it manually to emphasize the point). If it were

set to false, the filename would be invalid, so the data will not be cached.

Here’s how we make the calls to our SOAP client class:

cachefunction.php (excerpt)

$results = $cache->call('amazonClient->ManufacturerSearchRequest',
$params);

If the request is being made for the first time, Cache_Lite_Function will store the

results as a serialized array or object in a cache file (not that you need to worry

about this), and this file will be used for future requests until it expires. The

setLifeTime method can again be used to specify how long the cache files should

survive before they’re refreshed; currently, the default value of 3600 seconds (one

hour) is being used. You can then use the $results variable exactly as if you were

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

392 The PHP Anthology

calling the web service method directly. The output of our example script can be

seen in Figure 11.1.

Figure 11.1. SitePoint books at Amazon

Summary
Caching is an important and often overlooked aspect of web site development. Many

factors that affect the performance of today’s web sites weren’t a problem for their

predecessors—from complex, dynamic page generation, to a reliance on third-party

data over the network. In this chapter, we’ve examined HTML meta tags, HTTP

headers, PHP output buffering and PEAR::Cache_Lite, and we’ve seen how you

can use them to control the caching of your web site content and improve the site’s

reliability and performance.

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

Caching 393

Implementing a caching system for your site might be simple, but ultimately, it

depends on your requirements. If you have a busy and predominantly static web

site—such as a blog—that’s managed through a content management system, it will

likely require little alteration, yet may benefit from huge performance improvements

resulting from a small investment of your time. Setting up caching for a more com

plex site that generates content on a per-user basis, such as a portal or shopping

cart system, will prove a little more tricky and time consuming, but the benefits are

still clear. Regardless, I hope the information in this chapter has given you a good

grasp of the options available, and will help you determine which techniques are

most suitable for your application.

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

What's Next?
If you've enjoyed these chapters from The PHP Anthology 101 Essential Tips,
Tricks, and Hacks, 2nd Edition, why not order yourself a copy?

You've only seen a few examples of the most complete question-and-answer
book on PHP. It contains over 100 tutorial-style solutions to complex PHP
problems using the very latest programming techniques.

Its question-and-answer format lets you learn by example as you work
through its impressive PHP solutions, and the copy-and-paste code takes the
stress out of getting your web applications off the ground.

You'll get a healthy dose of object oriented PHP as well as learn how to:

- Cut page load times with caching.
- Manage errors gracefully.
- Secure your site with access control systems.
- Create web services with XML.
- Easily work with files, emails and images.
- Build functional forms, tables, and SEO-friendly URLs.
- And so much more!

If you have the drive to progress your skills or and improve your web
applications through concepts such as reusable components, caching
performance, or web services, then you'll never let this book out of your
sight...

Buy the full version now!

http://www.sitepoint.com/launch/c0688d

Index

Symbols
$_SESSION, 278, 281

$this variable, 15, 32

.forward file, 191

.htaccess file, 473

.ini files

storing configuration information, 164

A
abstract classes

about, 27

abstract methods

about, 28

AcceptPathInfo

"pretty" URLs, 140

access

to cron utility, 485

files on remote servers, 166–167

to SSH, 484

URLs, 495

access control, 269–362

changing passwords, 330–338

forgotten passwords, 318–330

HTTP authentication, 271–277

permission systems, 339–353

private sections of web sites, 283–297

registration systems, 297–318

session classes, 281–282

storing sessions in databases, 353–362

using sessions, 277–281

AccountMaintenance class, 319, 331

adding

data in databases, 53–55

aggregation

about, 23

agile documentation

about, 459

allow_url_fopen, 477

anti-spam (see spam legislation)

Apache web server

caching, 367

hosting support, 483

HTTP authentication, 271

PHP installation, 485

APIs

about, 13

callback arguments, 353

documenting, 448

REST web services, 429

arguments

overriding properties, 21

arrays

of lines, 86–88

reading files as, 149

strings, 78

asp_tags, 477

assertions

testing framework, 461

attachments

adding to email messages, 184–186

Auth class, 283

authentication

(see also HTTP authentication)

defined, 295

security, 494

authentication headers, 275

authorization

defined, 296

506

authorization header, 276

auto_append_file, 478

auto_prepend_file, 478

auto-commit mode

default mode, 66

autoincrementing field

determining INSERT's row number,

62–63

B
back-ups

database, 69–75

bandwidth

reading files, 152

bar graph

creating, 224

batch jobs

scheduling, 485

behavioral testing

about, 459

branches

revision control software, 438

bridge tables

about, 340

browsers (see Internet Explorer; web

browsers)

buffering (see output buffering)

build systems

developing code, 470

C
cache files

protecting, 385

Cache_Lite (see PEAR::Cache_Lite)

Cache_Lite cache

purging, 389–390

Cache_Lite_Function class, 391

caching, 363–393

client-side, 367–371

examining HTTP headers in web

browsers, 371–372

file downloads with Internet Explorer,

372–373

function calls, 390–392

output buffering for server-side cach

ing, 373–377

parts of pages, 377–381

PEAR::Cache_Lite configuration op

tions, 385–389

purging Cache_Lite cache, 389–390

using PEAR::Cache_Lite for server-

side caching, 382–385

calendars

creating, 102–107

call_time_pass_reference, 476

callbacks

arguments, 353

error handler prototype, 242

CAPTCHA (Completely Public Turing

Test to Tell Computers and Hu

mans)

image verification, 234

CGI mode, 485

change password form

example of, 333

changesets

revision control software, 437

characters (see escape characters; wild

card characters)

charts

displaying, 223–230

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

507

classes

(see also abstract classes; PEAR; spe

cific classes)

about, 10

access control for sections of web

sites, 283–297

repositories of reusable PHP classes,

504

client-side caching

controlling, 367–371

code

(see also source code)

coding standards, 446

deploying, 468–471

documenting, 448–453

maintaining multiple versions, 438–

441

reuse, 9

revising old code, 467–468

testing framework, 454–462

tracking revisions, 436–438

writing distributable code, 441–448

writing portable code, 33–38

code coverage reports, 463

command line

use of, 485, 486

communications

security, 495

composition

about, 25

compressing

database data, 174

files, 172–174

concatenation

strings, 78

Concurrent Versioning System (CVS),

437

configuration, 473–481

documentation about, 3

PEAR::Cache_Lite, 385–389

for portable code, 33

settings, 286

storing configuration information in

files, 163–165

configuration files

used in access control examples, 270

constructors

Auth class, 284

defined, 14

overriding, 22

content

searching for in XML, 409–412

content-disposition header, 170

content-length header, 171

Content-Type header, 170, 198

control (see access control; error hand

ling)

COUNT function

rows returned from a SELECT call, 60

credentials

passing in DSN, 44

cron utility

access to, 485

cross-site request forgery (CSRF)

about, 493

cross-site scripting (XSS), 83

about, 489–491

session security, 281

cryptographic storage

security, 495

CURRENT_TIMESTAMP function, 108

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

508

D
data

compressing in databases, 174

outputting in table, 127–129, 130–133

data grids

customized, 134–139

data types

strings, 77

database connections

setting up, 311

database servers

port numbers, 44

database transactions

defined, 66

databases, 39–75

accessing, 41–44

adding or modifying data, 53–55

backing-up, 69–75

compressing data, 174

errors in SQL queries, 49–52

escape characters, 80

fetching data from tables, 44–49

flexible SQL statements, 57–59

INSERT's row number using autoincre

menting field, 62–63

PDO, 40–41

permission systems, 339

rows affected by SQL queries, 59–61

searching tables, 63–64

SQL injection attacks, 55–57

storing sessions, 353–362

transactions, 65–67

DatabaseSession class, 354, 361

date function, 99, 101, 371

DATE_ADD function, 111

date_default_timezone_set function, 99

DATE_FORMAT function, 109

DATE_SUB function, 111

dates and times, 95–113

(see also HTTP dates)

calendars, 102–107

current, 98–99

date calculations using MySQL, 111–

112

days of the week, 101

formatting MySQL timestamps, 109–

110

number of days in month, 101–102

storing dates in MySQL, 107–109

Unix timestamps, 96–98

days

in a month, 101–102

of week, 101

defaults

error mode, 50

mode in PDO, 66

deploying

code, 468–471

destructors

defined, 14

dir pseudo-class, 161

direct object references

security, 491

directories

examining, 160–161

DirectoryIterator class, 174

display_errors directive, 240, 261, 477

displaying (see outputting)

distributed systems

revision control software, 437

docblocks

about, 449

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

509

documentation

(see also agile documentation)

code, 448–453

for PHP, 2–9

test suites as, 453

DOM

generating XML, 407

DOM functions

navigating XML, 405

DOM XML extension, 397

downloads

caching files with Internet Explorer,

372–373

DSN (Data Source Name)

about, 43

dynamic SQL

sprintf function, 59

dynamic web pages

caching, 363

E
E_ERROR error level, 240

E_NOTICE error level, 240

E_STRICT error level, 173, 181, 240, 293

E_USER_ERROR error level, 240, 242

E_USER_NOTICE error level, 240, 241

E_USER_WARNING error level, 240, 242

E_WARNING error level, 240

email, 179–196

adding attachments, 184–186

email injection attacks, 193–195

generating complex emails, 182–184

groups, 188–191

incoming email, 191–193

sending files, 171

sending HTML email, 186–188

sending simple email, 179–182

email injection attacks, 193–195

encapsulation

about, 13

environmental errors

defined, 237

environmental PHP errors

handling as exceptions, 260

ERRMODE_EXCEPTION, 51

ERRMODE_SILENT, 50

ERRMODE_WARNING, 50

error handling, 237–268

custom error handlers, 242–247

custom exception class, 252–257

custom exception handler, 257–260

displaying errors and exceptions, 261–

265

E_STRICT constant, 173

error levels reported, 238–240

handling as if they were exceptions,

260–261

logging and reporting, 247–248

redirecting to another page, 265–267

security, 493

settings, 239–241, 480

SQL queries, 49–52

triggering errors, 241–242

using exceptions for, 248–252

error notices

JpGraph, 224

error_log, 480

error_log directive, 241

error_log function, 263

error_reporting directive, 239, 477

escape characters

in databases, 80

exception class, 252–257

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

510

exception classes

defining, 300

exception handlers

implementing, 257–260

exception mode

errors in SQL queries, 51

exceptions

displaying, 261–265

handling errors as if they were excep

tions, 260–261

using for error handling, 248–252

execution

settings, 475–479

EXIF information

extracting, 217–220

exif_read_data function, 218

Expires header, 371

Expires meta tag, 366

explode function, 86

extension, 481

extension_dir, 481

extensions

available from hosting service, 486

documentation about, 5

XML, 396–398

extracting

files, 173

F
fatal errors

handling as exceptions, 260

features

documentation about, 4

fetchObject method

prepare and execute, 49

fields (see auto-incrementing field; form

fields)

file execution attacks, 491

file handles

using, 153–155

file pointers

using, 153

file_get_contents function, 150

file_put_contents function, 156

files, 147–177

(see also specific files; ZIP utility)

accessing information about local

files, 157–159

accessing on remote servers, 166–167

caching downloads with Internet Ex

plorer, 372–373

creating compressed ZIP/TAR files,

172–174

examining directories, 160–161

FTP, 167–169

managing downloads, 170–172

modifying local files, 155–156

outputting source code online, 161–

163

reading local files, 148–152

SPL, 174–177

storing configuration information in,

163–165

fonts (see TrueType fonts)

form fields

prepopulating, 80

formatting

dates, 96

MySQL timestamps, 109–110

output text, 88–90

strings, 81–82

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

511

forms (see HTML forms)

FTP (File Transfer Protocol)

using, 167–169

function calls

caching, 390–392

functions

(see also specific functions)

file information, 157

fwrite function, 156

G
galleries (see thumbnail galleries)

generating

(see also sending)

complex emails, 182–184

GNU Make, 470

graphical watermarks

displaying, 221

graphs

displaying, 223–230

grids (see data grids)

groups

email, 188–191

H
handles (see file handles; file pointers)

header lines

email injection attacks, 193

headers (see authentication headers; au

thorization header; Expires header;

HTTP headers; request headers;

page expiry headers)

help (see documentation)

highlight_file function, 162

highlight_string function, 161

hinting (see type hinting)

hints

passwords, 319

hosting

checklist, 483–487

HTML

meta tags, 365

HTML email

sending, 186–188

HTML forms

building, 116–127

HTML tags

stripping from text, 82–83

HTML_QuickForm class, 117

HTML_Quickform package, 309, 325

HTML_Table class, 127

HTML_Table_Matrix class, 102

htmlentities function, 80

HTTP authentication

about, 271–277

HTTP Authentication package, 276

HTTP dates

calculation of, 371

HTTP headers

caching, 365

examining in web browsers, 371–372

file downloads, 170

output buffering, 377

HTTP response headers, 278

http.conf file

hotlinking images, 231

I

ignore_repeated_errors, 480

ignore_repeated_source, 480

imagecopyresampled function, 201

images, 197–236

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

512

charts and graphs, 223–230

EXIF information, 217–220

hotlinking, 230–234

human verification, 234–235

MIME type, 198–199

resizing, 202–213

thumbnail galleries, 214–217

thumbnails, 199–202

watermarks, 220–223

implode function, 87

include_path, 478

includes

settings, 475–479

incoming email

handling, 191–193

information leakage

security, 493

inheritance

about, 17

ini_alter, 474

ini_set, 474

injection flaws, 491

INSERT function

data into databases, 53

determining row number with

autoincrementing field, 62–63

installation

documentation about, 3

PEAR, 498–504

PHP on Apache web server, 485

Zend Framework, 395

interfaces

(see also object interfaces)

defined, 27

Internet Explorer

caching file downloads, 372–373

interpolation

(see also variable interpolation)

strings, 77

INTERVAL keyword, 111

J
jobs (see batch jobs)

JpGraph library, 223

L
LAMP

hosting support, 483

levels

errors, 238–240

LIKE operator

searching tables, 63

lines

arrays of, 86–88

Linux

dates, 97

hosting support, 483

session security, 280

listInsertId method

using, 62

local files

accessing information about, 157–159

modifying, 155–156

reading, 148–152

localhost

connecting to MySQL databases, 41

log_errors, 241, 480

logging

errors, 247–248

logic errors

defined, 238

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

513

login

magic quotes, 288

M
magic methods

about, 14

magic quotes

checking for, 37

magic_quotes_gpc, 288, 476

mail function, 180

Mail_mime package, 309, 325

max_execution_time, 478

MD5 algorithm

passwords, 286

security, 495

member variables (see properties)

memory_limit, 479

meta tags

caching, 365

methods

(see also abstract methods; magic

methods; static methods)

about, 11

overriding, 20

Microsoft Windows (see Windows)

MIME type

specifying, 198–199

mktime function, 97

mod_rewrite

"pretty" URLs, 141

hotlinking images, 231

modes (see exception mode; silent mode;

warning mode)

modifying

data in databases, 53–55

local files, 155–156

multi-processing module (MPM)

hosting support, 484

MultiViews

"pretty" URLs, 140

MyISAM engine

performance, 361

MySQL

calculating dates, 111–112

MyISAM engine performance, 361

stored procedure example, 68–69

storing dates, 107–109

MySQL databases

connecting to on localhost, 41

MySQL timestamps

formatting, 109–110

mysql_real_escape_string function, 80

MySQLDump class

operating system configuration, 70

using, 72

N
namespaces

choosing, 445

defined, 413

nodes

searching for in XML, 409–412

non-distributed systems

revision control software, 437

“notice” error messages, 186

NOW function, 108

O
object interfaces

about, 29

object oriented programming (OOP)

about, 9–33

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

514

using, 442

object type hinting, 249

objects

creating, 14

treating as strings, 16

open source

revision control software, 437

Open Web Application Security Project

(OWASP), 489

open_basedir, 477

operating systems

MySQLDump class, 70

output buffering

caching parts of pages, 378

displaying errors and exceptions, 261

server-side caching, 373–377

outputting

charts and graphs, 223–230

data in table, 127–129, 130–133

errors and exceptions, 261–265

formatted text, 88–90

source code online, 161–163

strings, 79–81

overloading

servers, 484

overriding

constructors, 22

methods and properties, 20

P
packet sniffers

data security, 270

page expiry headers

setting, 367

pages

caching parts of, 377–381

preventing web browsers from cach

ing, 365–367

parsing

RSS feeds, 398–405

XML with XMLReader, 399

passing

credentials in DSN, 44

passwords

changing, 330–338

forgotten, 318–330

MD5 algorithm, 286

security, 494

PDO (PHP Data Object)

about, 40–41

auto-commit mode, 66

PEAR, 497–504

alternatives to, 504

installing, 498–504

PEAR Coding Standards, 446

PEAR package manager, 501–503

PEAR packages

PHP 5 E_STRICT compliance, 293

PEAR::Cache_Lite

configuration options, 385–389

server-side caching, 382–385

PEAR::HTML_QuickForm package, 297

PEAR::Mail class, 182

PEAR::Mail package, 180

PEAR::Mail_Mime class, 182, 184, 186,

188, 297

PEAR::Net_FTP class, 168

PEAR::Validate class, 90

performance

MyISAM engine, 361

permissions

files on Unix-based Web servers, 156

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

515

permissions systems

building, 339–353

Phing, 470

php.ini file

configuration, 473

date.timezone setting, 99

error handling settings, 242

error logging settings, 247

safe_mode, 486

phpDocumentor, 449

phpinfo function, 485

phpt testing framework, 456, 460

PHPUnit, 456, 461

pie charts

creating, 227

placeholders

date function, 100

pointers (see file pointers)

polymorphism

about, 27

port numbers

database servers, 44

portability

settings, 475–477

post_max_size, 479

prepare and execute methods

PDO database access, 46

SQL injection attack, 55

prepopulating

form fields, 80

preserve state, 277

"pretty" URLs, 139–145

printf function, 89

printing (see outputing)

private implementation

defined, 13

programming errors

defined, 237

properties

(see also static properties)

about, 11

overriding, 20

protected visibility

defined, 13

protecting

cache files, 385

prototypes

error handlers, 242

proxy servers

caching, 366

public interfaces (see APIs)

public visibility

defined, 13

purging

Cache_Lite cache, 389–390

Q
Query method

PDO database access, 45

R
read function, 356

readCache function, 378

readdir function, 160

readfile function, 152, 170

reading

local files, 148–152

realm

HTTP authentication, 276

redirecting

to another page, 265–267

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

516

refactoring

about, 467

register_globals, 36, 476

registration forms

example of, 317

registration systems

building, 297–318

relational databases

PHP support for, 39

remote servers

accessing files on, 166–167

replace operations

advanced, 84–86

report_memleaks, 480

reporting

(see also error handling)

errors, 247–248

repositories

layout, 438

reusable PHP classes, 504

request headers, 368

resellers

hosting services, 484

reserved words, 341

resetting

passwords, 325

resizing

images, 202–213

REST web services

consuming, 425–431

serving, 431–433

revision control software (RCS)

about, 436–438

RSS feeds

generating, 405–409

parsing, 398–405

rules (see validation rules)

S
safe_mode, 486

SAX

parsing RSS feeds, 404

XML extension, 397

scalar

strings, 77

scheduling

batch jobs, 485

screening

web site visitors, 297

scripts (see stored procedures)

handling incoming email, 191

hosting policy, 485

search operations

advanced, 84–86

searching

for nodes or content in XML, 409–412

tables, 63–64

security, 489–496

data transmission, 269

documentation about, 4

email injection attacks, 193–195

files, 148, 156, 165

hiding code, 163

sessions, 280

settings, 475–477

SELECT call

number of rows returned, 60

sending

(see also generating)

email to groups, 188–191

HTML email, 186–188

simple email, 179–182

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

517

servers

(see also Apache web server; database

servers; proxy servers; remote

servers; web servers)

displaying errors, 261

overloading, 484

session files, 280

swapping, 279

server-side caching

output buffering, 373–377

using PEAR::Cache_Lite for, 382–385

services (see web services; XML)

session class, 281–282

session management

security, 494

session.save_path, 481

session.use_cookies, 481

session_regenerate_id function, 494

sessions

storing, 279

using, 231, 277–281

set_error_handler function, 243, 257, 260

set_exception_handler function, 257

settingAllowOverride, 486

settings, 475–481

configuration, 286

error handling, 239–241, 242, 480

includes and execution, 475–479

miscellaneous, 481

security and portability, 475–477

short_open_tag, 476

SignUp class, 299

signup page

creating, 308

silent mode

errors in SQL queries, 50

SimpleTest, 456, 461

SimpleXML

parsing RSS feeds, 398

REST web services, 426

XML extension, 397

SOAP web services

consuming, 420–422

serving, 423–425

SOAP XML extension, 398

SoapClient class, 421

source code

outputting online, 161–163

spam legislation

about, 190

SPL (Standard PHP Library)

using, 174–177

sprintf function, 89

dynamic SQL, 59

SQL, 44–61

adding or modifying data in databases,

53–55

errors, 49–52

fetching data from tables, 44–49

flexible SQL statements, 57–59

rows affected by a query, 59–61

stored procedures, 67–69

SQL injection attacks

about, 491

prepare and execute methods, 55

protecting from, 55–57

SSH

access to, 484

SSL

security, 495

standards

coding, 446

static methods

about, 31

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

518

validating strings, 90

static properties

about, 31

stored procedures

cross-site scripting security exploit,

83

using with PDO, 67–69

storing

configuration information in files,

163–165

cryptographic data, 495

dates in MySQL, 107–109

sessions elsewhere from server, 279

sessions in databases, 353–362

str_replace function, 85

streams

accessing files, 166

string functions

using XML extension instead of, 396–

398

strings, 77–94

breaking up text into arrays of lines,

86–88

formatting, 81–82

outputting formatted text, 88–90

outputting safely, 79–81

reading files as, 150

search and replace, 84–86

stripping HTML tags from text, 82–83

treating objects as, 16

trimming white space, 88

validating submitted data, 90–94

wrapping text, 84

strip_quotes.php file, 91

stripping

HTML tags from text, 82–83

strtotime function, 101, 102

The PHP Anthology (www.sitepoint.com)

Structures_DataGrid class, 134

Subversion (SVN), 436, 437

swapping

servers, 279

symlinks

deploying code, 468

syntax errors

defined, 237

T
tables

fetching data, 44–49

outputting data, 127–129, 130–133

searching, 63–64

tags

deploying code, 468

revision control software, 438

TAR files

creating, 172–174

template caching

about, 376

ternary operators

reading files as arrays, 149

Test Driven Development (TDD)

defined, 462

test environments, 461

test pages

permission systems, 349

test suites

as documentation, 453

testing

code coverage, 463–467

text

arrays of lines, 86–88

outputting, 88–90

trimming white space, 88

wrapping, 84

http://www.sitepoint.com/launch/c0688d

519

text watermarks

displaying, 220

threaded multi-processing module

(MPM)

hosting support, 484

thumbnail galleries

creating, 214–217

thumbnail images

creating, 199–202

times (see dates and times)

timestamps (see MySQL timestamps;

Unix timestamps)

tracking

code revisions, 436–438

transactions

databases, 65–67

trigger_error function, 241

triggering

errors, 241–242

trimming

white space from text, 88

TrueType fonts

JpGraph, 225

type hinting

about, 25

types

data, 77

U
Unix

session security, 280

Unix timestamps

using, 96–98

UPDATE function

data into databases, 54

upgrades

hosting service policy, 486

uptime command, 484

URLs

"pretty", 139–145

access, 495

direct object reference attacks, 491

User class, 343

utilities (see cron utility; ZIP utility)

V
validation rules

forms, 120

variable interpolation

strings, 77

variables

constructing SQL statements, 57

verification

of images by humans, 234

versions

multiple code, 438–441

visibility

defined, 13

W
warning mode

errors in SQL queries, 50

watermarks

adding to images, 220–223

web browsers

(see also Internet Explorer)

examining HTTP headers, 371–372

preventing from caching pages, 365–

367

web hosting (see hosting)

web pages (see pages)

web servers

(see also Apache web server)

Order the print version of this book to get all 500+ pages!

http://www.sitepoint.com/launch/c0688d

520

caching, 364

preventing web browsers from caching

pages, 365–367

web services, 412–434

(see also XML)

consuming REST, 425–431

consuming SOAP, 420–422

consuming XML-RPC services, 412–

416

serving REST, 431–433

serving SOAP, 423–425

serving XML-RPC, 416–420

week

day of, 101

WHERE clause

UPDATE and DELETE SQL com

mands, 61

whitespace

trimming, 88

wildcard characters

about, 64

Windows

dates, 97

MySQLDump class, 72

wordwrap function, 84

wrapper class, 281

wrapping

text, 84

write function, 357

writeCache function, 378

WSDL

SOAP web services, 421, 424

X

XDebug, 463

XML, 395–412

extensions, 396–398

generating RSS feeds, 405–409

parsing RSS feeds, 398–405

REST web services, 426

searching for nodes or content, 409–

412

XMLReader

parsing XML, 399

XMLReader class, 397

XML-RPC web services

consuming, 412–416

serving, 416–420

XML-RPC XML extension, 398

xmlrpc_encode_request function, 414

XMLWriter class, 397

generating XML, 408

XPath

searching XML, 410

XPath XML extension, 397

XSL XML extension, 397

XXS (see cross-site scripting)

Z
Zend Framework

coding standards, 447

installing, 395

REST web service, 430

XML-RPC, 413

Zend_Feed class

SimpleXML, 403

Zend_XmlRpc_Server class, 416, 419

ZIP utility

backing up databases, 71

creating files, 172–174

The PHP Anthology (www.sitepoint.com)

http://www.sitepoint.com/launch/c0688d

	The PHP Anthology
	Thank you for downloading
	Summary of Contents of this Excerpt
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s Covered in this Book?
	Running the Code Examples
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Conventions Used in this Book
	Code Samples
	Tips, Notes, and Warnings

	Using Databases with PDO
	What is PDO?
	How do I access a database?
	Solution
	Discussion
	The DSN in Detail
	Other Concepts

	How do I fetch data from a table?
	Solutions
	Using the Query Method
	Using the Prepare and Execute Methods

	Discussion
	Using Fetch Choices

	How do I resolve errors in my SQL queries?
	Solutions
	Using Silent Mode
	Using Warning Mode
	Using Exception Mode

	Discussion

	How do I add data to, or modify data in, my database?
	Solution
	INSERT Data into the Database
	UPDATE Data in the Database

	Discussion

	How do I protect my web site from an SQL injection attack?
	Solution
	Discussion

	How do I create flexible SQL statements?
	Solution
	Discussion

	How do I find out how many rows I’ve touched?
	Solutions
	Counting the Rows Returned
	Discussion

	Counting the Rows Affected

	How do I find out a new INSERT’s row number in an autoincrementing field?
	Solution
	Discussion

	How do I search my table?
	Solution
	Discussion

	How do I work with transactions?
	Solution
	Discussion

	How do I use stored procedures with PDO?
	Solution
	Discussion

	How do I back up my database?
	Solution
	Discussion
	Catering to Platform Differences

	Summary

	Access Control
	How do I use HTTP authentication?
	Solution
	Discussion

	How do I use sessions?
	Solution
	Discussion
	Session Security

	How do I create a session class?
	Solution

	How do I create a class to control access to a section of the site?
	Solution
	The Auth Class
	The Restricted Area

	Discussion
	Room for Improvement

	How do I build a registration system?
	Solution
	The SignUp Class
	The Signup Page

	Discussion

	How do I deal with members who forget their passwords?
	Solution
	The AccountMaintenance Class
	The Reset Password Page

	How do I let users change their passwords?
	Solution
	Modifying AccountMaintenance
	The Change Password Form

	Discussion

	How to do I build a permissions system?
	Solution
	Setting Up the Database
	The User Class
	The Permissions Test Page

	Discussion

	How do I store sessions in a database?
	Solution
	The DatabaseSession Class
	Using the DatabaseSession Class

	Summary

	Caching
	How do I prevent web browsers from caching a page?
	Solutions
	Using HTML Meta Tags
	Using HTTP Headers

	Discussion

	How do I control client-side caching?
	Solutions
	Setting a Page Expiry Header
	Acting on the Browser’s Request Headers

	Discussion

	How do I examine HTTP headers in my browser?
	Solution

	How do I cache file downloads with Internet Explorer?
	Solutions

	How do I use output buffering for server-side caching?
	Solution
	Discussion
	What About Template Caching?
	HTTP Headers and Output Buffering

	How do I cache just the parts of a page that change infrequently?
	Solution
	Discussion

	How do I use PEAR::Cache_Lite for server-side caching?
	Solution

	What configuration options does Cache_Lite support?
	Solution

	How do I purge the Cache_Lite cache?
	Solution
	Discussion

	How do I cache function calls?
	Solution

	Summary

	What’s Next?
	Index

