Linux Device Drivers &
Project3 preview

CSC345

Project 3 Preview

Write a device driver for a pseudo stack device

|ldea from http://www.cs.swarthmore.edu/~newhall/cs45/f01/proj5.html

Linux character device type supports the following operations
— Open: only one is allowed.
— Write: writes an char string to top of the device stack. Error if stack is
empty
— Read: reads an item from top of the device stack. Error if stack is empty
— Release: release the device

Install with LKM.

Test: It will be a dedicated standalone machine in the lab. Root
password may be given out. If you mess up, you will re-install the

User program & Kernel interface

User Frograms

Libraries
Uszer Lewval F 3
Wrleer G
System Call Interface

! 1

File Subsystem ¥ Crocess Control Subsystem
I Schedwler | Memony Inter-process
Management | Communication
Buffer Cache F
i
¥

Character | Block

Device Divars
y)

h 4 ¥
Hardware Control

Kermel Level

Hardware Laveal

Hardware

Note: This picture is excerpted from Write a Linux Hardware Device Driver, Andrew O’'Shaughnessy, Unix world

Loadable Kernel Module (LKM)

A new kernel module can be added on the
fly (while OS is still running)

 LKMs are often called “kernel modules”
* They are not user program

Types of LKM

Device drivers

Filesystem driver (one for ext2, MSDOS
FAT16, 32, NFS)

System calls
Network Drivers

TTY line disciplines. special terminal
devices.

Executable interpreters.

Basic LKM (program)

« Every LKM consist of two basic functions (minimum) .

int init_module(void) /*used for all initialition stuff*/

{

}

void cleanup_module(void) /*used for a clean shutdown*/

{

}
« Loading a module - normally retricted to root - is managed by issuing the
follwing command: # insmod module.o

LKM Ulilities

insmod
— Insert an LKM into the kernel.
rmmod
— Remove an LKM from the kernel.
depmod
— Determine interdependencies between LKMs.
kerneld
— Kerneld daemon program
ksyms
— Display symbols that are exported by the kernel for use by new LKMs.
Ismod
— List currently loaded LKMs.
modinfo
— Display contents of .modinfo section in an LKM object file.
modprobe

— Insert or remove an LKM or set of LKMs intelligently. For example, if you must load A before
loading B, Modprobe will automatically load A when you tell it to load B.

Common LKM util

Create a special device file
% mknode /dev/driver c 40 0

Insert a new module
% insmod modname

Remove a module

%rmmod modname

List module
% Ismod
Or % more /proc/modules
audio 37840 0
cmpci 24544 0
soundcore 4208 4 [audio cmpci]

nfsd 70464 8 (autoclean)

Linux Device Drivers

A set of API subroutines (typically system
calls) interface to hardware

Hide implementation and hardware-
specific details from a user program

Typically use a file interface metaphor
Device is a special file

Linux Device Drivers (continued)

 Manage data flow between a user
program and devices

* A self-contained component (add/remove
from kernel)

* A user can access the device via file name
in /dev , e.qg. /dev/Ip0

General implementation steps

Understand the device characteristic and supported
commands.

Map device specific operations to unix file operation

Select the device name (user interface)
— Namespace (2-3 characters, /dev/Ip0)

(optional) select a major number and minor (a device
special file creation) for VFS interface

— Mapping the number to right device sub-routines
Implement file interface subroutines
Compile the device driver

Install the device driver module with loadable kernel
module (LKM)

or Rebuild (compile) the kernel

Read/write (1/O)

* Pooling (or synchronous)

* Interrupt based

Device Driver interface

NSSY PROSYaIns

sistern calls

fi=opan Yolevdoo 0 RDWR,)

readifd, out data, 8);

write(fd, In_data, 81

cfosefol;

|

I irtual Fllesissiern Switc h

Linw karnef I

device diiver rolltines| ool open(]

ihdicates data flow

Note: This picture is excerpted from Write a Linux Hardware Device Driver, Andrew O’'Shaughnessy, Unix world

VSF & Major number

principal interface between a device driver and Linux kernel

Nl BssE-process

executes 4 system cal .. apen oenwdoo O RO, O

e e BB S e :
i device citivar solree cocle

o open)

{

— .}

VFs
virtua! filessterm switch

xeg_chose(]

{

1

:

1
cirivier rautines reglstered]

1

1

linLx kernel with VFS thraugh the |

fife_operations structure B

astruct flie_operations o fops =1

HEK_OPER,
X close,

: } .l.
Ve)

{

y register chrcewi 22, e Seood_fops));

File operation structure

« struct file _operations Fops = {
NULL, /* seek ™/
XXX_read,
XXX_write,
NULL, /* readdir ™/
NULL, /* select ™/
NULL, /*ioctl*/
NULL, /* mmap */
XXX_open,
NULL, /* flush */
xxX_release /* a.k.a. close */

Device special file

 Device number

— Major (used to VFS mapping to right functions)
— Minor (sub-devices)

* mknod /dev/stk c 38 0
* |s —| /dev/tty

— crw-rw-rw- 1 root root 5, 0 Apr 21 18:33 /devi/tty

Register and unregister device

int init_module(void) /*used for all initialition stuff*/

{
/* Register the character device (atleast try) */
Major = register_chrdev(0,
DEVICE_NAME,
&Fops);
}

void cleanup_module(void) /*used for a clean shutdown*/

{ret = unregister_chrdev(Major, DEVICE_NAME);

Register and unregister device

compile

-Wall -DMODULE -D KERNEL -DLINUX -DDEBUG -l
/usr/include/linux/version.h

Install the module

%insmod module.o

List the module
%Ilsmod

If you let the system pick Major number, you can find the
major number (for special creation) by
% more /proc/devices

Make a special file
% mknod /dev/device_name ¢ major minor

Device Driver Types

» A character device driver (c)

— Most devices are this type (e.g.Modem, Ip,
USB

— No buffer.

* A block device driver (b)

— through a system buffer that acts as a data
cache.

— Hard drive controller and HDs

Implementation

Assuming that your device name is Xxx
Xxx_init() initialize the device when OS is booted
Xxx_open() open a device

Xxx_read() read from kernel memory
Xxx_write() write

Xxx_release() clean-up (close)

init_module()

cleanup_module()

Supported functions

add_timer()
— Causes a function to be executed when a given amount of time has passed
cli()
— Prevents interrupts from being acknowledged
end_request()
— Called when a request has been satisfied or aborted
free_irq()
— Frees an IRQ previously acquired with request_irq() or irgaction()
get_user*()
— Allows a driver to access data in user space, a memory area distinct from the kernel

inb(), inb_p()
— Reads a byte from a port. Here, inb() goes as fast as it can, while inb_p() pauses before returning.
irgaction()
— Registers an interrupt like a signal.
IS_*(inode)
— Tests ifinode is on a file system mounted with the corresponding flag.
kfree*()
— Frees memory previously allocated with kmalloc()
kmalloc()
— Allocates a chu nk of memory no larger than 4096 bytes.
MAJOR()
— Reports the major device number for a device.
MINOR()

— Reports the minor device number for a device.

Supported functions

memcpy_*fs()

— Copies chunks of memory between user space and kernel space
outb(), outb_p()

— Writes a byte to a port. Here, outb() goes as fast as it can, while outb_p() pauses before returning.
printk()

— A version of printf() for the kernel.
put_user*()

— Allows a driver to write data in user space.
register_*dev()

— Registers a device with the kernel.
request_irq()

— Requests an IRQ from the kernel, and, if successful, installs an IRQ interrupt handler.
select_wait()

— Adds a process to the proper select_wait queue.
*sleep_on()

— Sleeps on an event, puts a wait_queue entry in the list so that the process can be awakened on that event.
sti()

— Allows interrupts to be acknowledged.
sys_get*()

— System calls used to get information regarding the process, user, or group.
wake_up*()

— Wakes up a process that has been put to sleep by the matching *sleep_on() function.

Pitfalls

1. Using standard libraries: can only use
kernel functions, which are the functions
you can see in /proc/ksyms.

2. Disabling interrupts You might need to
do this for a short time and that is OK,
but if you don't enable them afterwards,
your system will be stuck

Resources

* Linux Kernel API: http://kernelnewbies.org/documents/kdoc/kernel-
api/linuxkernelapi.html

« Kernel development tool http://www.jungo.com/products.html

