
Linux Device Drivers &
Project3 preview

CSC345

Project 3 Preview

• Write a device driver for a pseudo stack device
• Idea from http://www.cs.swarthmore.edu/~newhall/cs45/f01/proj5.html

• Linux character device type supports the following operations
– Open: only one is allowed.
– Write: writes an char string to top of the device stack. Error if stack is

empty
– Read: reads an item from top of the device stack. Error if stack is empty
– Release: release the device

• Install with LKM.
• Test: It will be a dedicated standalone machine in the lab. Root

password may be given out. If you mess up, you will re-install the

User program & Kernel interface

Note: This picture is excerpted from Write a Linux Hardware Device Driver, Andrew O’Shauqhnessy, Unix world

Loadable Kernel Module (LKM)

• A new kernel module can be added on the
fly (while OS is still running)

• LKMs are often called “kernel modules”
• They are not user program

Types of LKM

• Device drivers
• Filesystem driver (one for ext2, MSDOS

FAT16, 32, NFS)
• System calls
• Network Drivers
• TTY line disciplines. special terminal

devices.
• Executable interpreters.

Basic LKM (program)

• Every LKM consist of two basic functions (minimum) :
int init_module(void) /*used for all initialition stuff*/
{
...
}
void cleanup_module(void) /*used for a clean shutdown*/
{
...
}

• Loading a module - normally retricted to root - is managed by issuing the
follwing command: # insmod module.o

LKM Utilities
• insmod

– Insert an LKM into the kernel.
• rmmod

– Remove an LKM from the kernel.
• depmod

– Determine interdependencies between LKMs.
• kerneld

– Kerneld daemon program
• ksyms

– Display symbols that are exported by the kernel for use by new LKMs.
• lsmod

– List currently loaded LKMs.
• modinfo

– Display contents of .modinfo section in an LKM object file.
• modprobe

– Insert or remove an LKM or set of LKMs intelligently. For example, if you must load A before
loading B, Modprobe will automatically load A when you tell it to load B.

Common LKM util
• Create a special device file

% mknode /dev/driver c 40 0

• Insert a new module
% insmod modname

• Remove a module
• %rmmod modname
• List module

% lsmod
Or % more /proc/modules

audio 37840 0
cmpci 24544 0
soundcore 4208 4 [audio cmpci]
nfsd 70464 8 (autoclean)

Linux Device Drivers

• A set of API subroutines (typically system
calls) interface to hardware

• Hide implementation and hardware-
specific details from a user program

• Typically use a file interface metaphor
• Device is a special file

Linux Device Drivers (continued)

• Manage data flow between a user
program and devices

• A self-contained component (add/remove
from kernel)

• A user can access the device via file name
in /dev , e.g. /dev/lp0

General implementation steps
• Understand the device characteristic and supported

commands.
• Map device specific operations to unix file operation
• Select the device name (user interface)

– Namespace (2-3 characters, /dev/lp0)
• (optional) select a major number and minor (a device

special file creation) for VFS interface
– Mapping the number to right device sub-routines

• Implement file interface subroutines
• Compile the device driver
• Install the device driver module with loadable kernel

module (LKM)
• or Rebuild (compile) the kernel

Read/write (I/O)

• Pooling (or synchronous)

• Interrupt based

Device Driver interface

Note: This picture is excerpted from Write a Linux Hardware Device Driver, Andrew O’Shauqhnessy, Unix world

VSF & Major number
• principal interface between a device driver and Linux kernel

File operation structure
• struct file_operations Fops = {

NULL, /* seek */
xxx_read,
xxx_write,
NULL, /* readdir */
NULL, /* select */
NULL, /* ioctl */
NULL, /* mmap */
xxx_open,
NULL, /* flush */
xxx_release /* a.k.a. close */

• };

Device special file

• Device number
– Major (used to VFS mapping to right functions)
– Minor (sub-devices)

• mknod /dev/stk c 38 0
• ls –l /dev/tty

– crw-rw-rw- 1 root root 5, 0 Apr 21 18:33 /dev/tty

Register and unregister device
int init_module(void) /*used for all initialition stuff*/
{

/* Register the character device (atleast try) */
Major = register_chrdev(0,

DEVICE_NAME,
&Fops);

:

}
void cleanup_module(void) /*used for a clean shutdown*/

{ret = unregister_chrdev(Major, DEVICE_NAME);

...
}

Register and unregister device
• compile

-Wall -DMODULE -D__KERNEL__ -DLINUX –DDEBUG -I
/usr/include/linux/version.h

• Install the module
%insmod module.o

• List the module
%lsmod

• If you let the system pick Major number, you can find the
major number (for special creation) by

% more /proc/devices

• Make a special file
% mknod /dev/device_name c major minor

Device Driver Types

• A character device driver (c)
– Most devices are this type (e.g.Modem, lp,

USB
– No buffer.

• A block device driver (b)
– through a system buffer that acts as a data

cache.
– Hard drive controller and HDs

Implementation
• Assuming that your device name is Xxx
• Xxx_init() initialize the device when OS is booted
• Xxx_open() open a device
• Xxx_read() read from kernel memory
• Xxx_write() write
• Xxx_release() clean-up (close)
• init_module()
• cleanup_module()

Supported functions
• add_timer()

– Causes a function to be executed when a given amount of time has passed
• cli()

– Prevents interrupts from being acknowledged
• end_request()

– Called when a request has been satisfied or aborted
• free_irq()

– Frees an IRQ previously acquired with request_irq() or irqaction()
• get_user*()

– Allows a driver to access data in user space, a memory area distinct from the kernel
• inb(), inb_p()

– Reads a byte from a port. Here, inb() goes as fast as it can, while inb_p() pauses before returning.
• irqaction()

– Registers an interrupt like a signal.
• IS_*(inode)

– Tests if inode is on a file system mounted with the corresponding flag.
• kfree*()

– Frees memory previously allocated with kmalloc()
• kmalloc()

– Allocates a chu nk of memory no larger than 4096 bytes.
• MAJOR()

– Reports the major device number for a device.
• MINOR()

– Reports the minor device number for a device.

Supported functions
• memcpy_*fs()

– Copies chunks of memory between user space and kernel space
• outb(), outb_p()

– Writes a byte to a port. Here, outb() goes as fast as it can, while outb_p() pauses before returning.
• printk()

– A version of printf() for the kernel.
• put_user*()

– Allows a driver to write data in user space.
• register_*dev()

– Registers a device with the kernel.
• request_irq()

– Requests an IRQ from the kernel, and, if successful, installs an IRQ interrupt handler.
• select_wait()

– Adds a process to the proper select_wait queue.
• *sleep_on()

– Sleeps on an event, puts a wait_queue entry in the list so that the process can be awakened on that event.
• sti()

– Allows interrupts to be acknowledged.
• sys_get*()

– System calls used to get information regarding the process, user, or group.
• wake_up*()

– Wakes up a process that has been put to sleep by the matching *sleep_on() function.

Pitfalls

1. Using standard libraries: can only use
kernel functions, which are the functions
you can see in /proc/ksyms.

2. Disabling interrupts You might need to
do this for a short time and that is OK,
but if you don't enable them afterwards,
your system will be stuck

Resources

• Linux Kernel API: http://kernelnewbies.org/documents/kdoc/kernel-
api/linuxkernelapi.html

• Kernel development tool http://www.jungo.com/products.html

