Four Pillars of Objected Oriented Programming (OOP):

Encapsulation: property of being a self-contained unit

Data Hiding: ability to use an object without knowing or caring how it works internally

Inheritance: allows reuse by modifying and existing class, usually by adding things

Polymorphism: class and function, i.e. same name referring to different types

User defined type: class (an collection of related variables and functions)

Allows for Encapsulation and Data Hiding

Class members can be overloaded, just as can a normal function.

class cat {

public: // default is private

int age;

int weight;

Meow()

// puting definition in class declaration, as for Lick() below, make it inline

Void Lick(void) { cout << "skurp\n"; }

private:

…

};

cat Frisky; // See Constructor, below

Frisky.Meow()

If a class member function is declared as const it means that function will not change

Any member of the class; e.g.

Void Meow() const;

Default Constructor takes no parameters and only allocates space for object,

has name class(), e.g. Cat(); it cannot have a return value or type not even void.

An explicit Constructor, e.g. for the class Cat is:

Cat::Cat(int start_age) {

 age=start_age

}

/*
Thus when defining an object of the class one must pass

the number of parameters declared in the Constructor

*/

Cat Frisky(3);

/*
leave parenthesis and parameters if there are 0 Constructor parameters.

This is and exception to the rule that all functions need parenthesis.

*/

Default Destructor takes no parameters and does nothing

An explicit Desstructor, e.g. for the class Cat is:

Cat::~Cat() {

 // do nothing

}

member variables (private or public)

member functions, or methods, (private or public)

object: individual instance of a class

Implementing class Methods - uses class::method
int Cat::Meow(void) {

Cout << "Meow\n";

}

The constructor actually has two stages: initialization and body:

Cat::Cat(): // constructor name and parameters

age(5), // initialization list

weight(8)

{ } // body

When a copy of an object is passed by value, a temporary copy is made, using the class's copy constructor. All copy constructors take one parameter, a reference to an object of the same class. It is good to make it a constant reference, since original is not altered:

Cat(const Cat& theCat);

This is a member by member copy, which is not appropriate for a member which is a pointer, since then the pointed to object is shared rather than really copied. This is handled by an overloaded method with one parameters as above which does the right thing.

Note: in C++ a struct is like a class except that its members are public by default.

An array of object can be had as follows:

Cat Family1[50];

Cat *Family2 = new Cat[50];

delete [] Family2;
// note syntax to free space!

// If brackets are left off only first Cat is free'd

But:

Cat *Family3[50]; // Family3 is an array of 50 unintialized pointers to Cat

Cat *Family4 = new Cat[50]; // Family4 is a pointer to an array of 50 Cat's

 <stdio.h> C

printf("Hello World\n");

<iostream.h> C++, <stdio.h> C

cout << "Hello World\n";

#define endl "\n"

Comments (why more than what)

/* … can be over multiple lines */

// to end of line

Constants

Literal: 29, 3.14, "pi"

#define symbol value

const keyword before an initialized declaration- better since constant is typed

enum tag {name_list}; // values are implicit unless made explicit with an initializer

Functions with default parameters (have an initializer in declaration or definition)

int func(int x=50)

A default value can be assigned to parameter n, only if default values have been defined

for all subsequent parameters in the list: int function(int z, int y=3, int x=50)

Static members and functions of a class

Static member variables are shared, i.e. the same for every object in the class, e.g. the total number of created objects.

class Cat {

public:

 int age;

 static int num_cats; // declaration, not a definition

...

 static int get_num_cats() { return num_cats; }

};

int Cat::num_cats=0; // a definition

// can be referred to, as above, without an object

// anywhere in program since it is public

But if the static variable is made private then a member function with an object is needed to access it. The alternative is to have a static member function which will of course have also have the right to access the static member variable but without needing an object instance. Static member functions do not have a this pointer. These function can be called either with an object instance or the class qualifier:

 Cat acat;

 int z;

 z=acat.get_num_cats(); // access with an object

 z=Cat::get_num_cats(); // access without an object

Pointers to member function must have the class and scooping operator, e.g.

void (Cat::*pFunc) (int);

Over-loading functions

Giving two or more different functions the same name,

provided the number and types of the parameters are different.

Also called function polymorphism

Overloading the constructor is one way of getting type conversion, e.g.

Cat::Cat(unsigned short a)

age(a)

{ }

inline function_declaration

this keyword is actually a hint or suggestion to the compiler and may be ignored

const pointers

const int * pOne; // pointer to a constant in

int * const pTwo; // a constant pointer to an int

const int * const pThree; // a constant pointer to a constant int

const Cat *pCat = new Cat; // pCat can only call const methods,

// this is equivalent to the this pointer being a pointer

// to a const object

Predefined Macro

__cplusplus

Additional C++ operators

>>
input redirection, e.g. cin >> x

<<
output redirection, e.g. cout << x

.*
?

->*
?

::
class_name::name or ::name

old and still used C operators:

&
address of (makes a pointer)

*
pointer dereference

->
class or struct pointer member reference

New C++ Keywords:

catch

class

friend

inline

mutable

delete
deallocate, or free()++, object

new
allocate, or malloc()++, object; returns NULL pointer if unable to allocate.

unsigned short int *pushort;

pushort = new unsigned short int;

delete pushort; // free the memory

pushort =0;

delete pushort; // safe

operator
used to overload operators, e.g.

int Cat::operator+ (const Cat&rc) {

 return(age+rc.age);

}

int Cat::operator++ () {

 return(++age);

}

private

protected
means private except for derived classes

public

template

this
a hidden or implicit parameter of each class member function,

that points to the object:

this->age; // see class cat

throw

try

virtual
overrides declared class to use allocated (new) class method,

(only works if base class has same method name as derived class,

but will not work on an object passed by value - only a pointer).

Note if any method is virtual then so should destructor be virtual.

The constructor cannot be virtual, so if needed create clone().

volatile

References vs Pointers

The purpose of references is to try to avoid the problems with bad pointers.

Reference variables must be initialized and cannot be reassigned to refer to another variable.. If that is needed use a pointer

An example of a reference variable is:

int &ref_variable = existing_int_variable;

where "ref_variable" is a reference to "existing_init_variable".

ref_variable = 5; // changes: existing_int_variable

The address of a reference variable is the address of the variable it referes to, there is no way to access the address of the reference variable itself.

A reference variable cannot be null. If that is possible first use a pointer:

int *pint = new int;

if(pint) int &rint = *pint;

else it would be an invalid program and will probably crash.

A variable declaration can be equivalently any of the following:

int& rint;

int & rint;

int &rint;

A function prototype with an abstract reference parameter would be:

int func(int &);

If a function argument is by reference (rather by value) then the referred to variable can change inside the function. Here is an example of swap by reference:

void swap(int &rx, int &ry) { int temp;

temp=rx;

rx=ry;

ry=temp;

}

int main() { int x=5, y=7;

swap(x,y); // works as if pointers were used

}

Don't return a reference to an object that isn't in scope:

int &func() {

 int &z;

 ...

 return(z);
}

This should cause a compiler error (Borland catches it but not Microsoft), but is not guaranteed to do so.

Note that you cannot delete (deallocate) an object by reference! If somehow (e.g. using a pointer) a referenced object is deleted then the reference variable is not properly defined and using it will cause an unpredictable problem.

Note in:

char buf[80];

cin >> buf;

there are two problems: one can exceed the array size of 80 and a space terminates the input!

This is fixed by doing:

char buf[80];

cin.get(buf,79); // get up to 79 or newline

Inheritance

A derived class has an is-a relationship to its base class, it is a superset having one or more specializations. The syntax is:

class derived : type base

e.g.

class Dog : public Mammal {

 ...

};

If a derived class overrides a method, then all base class methods of the same name are overridden (and hidden or inaccessible to the derived class). The new method must be same as derived class method in its prototype (including const) but except for return type. To get to such a hidden method use full qualifying name, e.g.

fido.Mammal::Move(10);

inside Dog class:

Mammal::Move(10);

Multiple Inheritance

Deriving a class from more than one base class. Syntax is to separate base classes by commas, e.g.

class Pegasus : public Horse, public Bird {

};

Chirp() in Bird would be implemented with a call to Whiny() to override.

Ambiguity resolution can be needed when the base classes have identical attributes (e.g. color). The compiler will give an error when you do not explicitly help it out resolve ambiguity:

COLOR cur_color = pPeg->Horse::GetColor();

Other ambiguities can occur around methods (getting more ugly).

Steams and Buffers

streambuf class manages an (I/O) buffer giving the ability to fill, empty, flush, etc.

ios class is base class, and has a streambuf as member variable.

istream and ostream classes derive from ios class and specialize input and output.

iostream class, derived from both istream and ostream provides methods for screen (and keyboard?).

fstream classes provide I/O from files.

